Author: Shashank Arora
Publisher: Elsevier
ISBN: 0128181265
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Heavy-Duty Electric Vehicles: From Concept to Reality presents a step-by-step design and development guide for heavy-duty electric vehicles. It also offers practical insights based on the commercial application of an electric city bus. Heavy-duty electric vehicle design is challenging due to a lack of clear understanding of the government policies, R&D directions and uncertainty around the performance of various subsystems in an electric powertrain. Therefore, this book discusses key technical aspects of motors, power electronics, batteries and vehicle control systems, and outlines the system integration strategies necessary for design and safe operation of electric vehicles in practice. This comprehensive book serves as a guide to engineers and decision makers involved in electric vehicle development programs and assists them in finding the suitable electric powertrain solution for a given heavy-duty vehicle application. Offers an overview of various standards and regulations that guide the electric vehicle design process and a comprehensive discussion on various government policies and incentive schemes propelling the growth of heavy electric vehicle markets across the world Provides a comparative evaluation of different electric drivetrain concepts and a step-by-step power calculation guide for heavy-duty electric powertrain Explains material selection and manufacturing methods for next generation batteries Discusses key elements and design rules for creating a robust high voltage energy storage system, appropriate packaging and its support systems including charging network Includes a concise description of torque mapping, power management and fault handling strategies for inverter drive and control systems Features case studies to better understand complex topics like charging system requirements and vehicle control system diagnostics
Heavy-Duty Wheeled Vehicles
Author: Boris Nikolaevich Belousov
Publisher: SAE International
ISBN: 0768080681
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable. Translated by SAE from Russian, this book narrates the history of HDWVs and presents the theory and calculations required to design them. It summarizes results of the authors’ academic research and experience and presents innovative technical solutions used for electric and hydrostatic transmissions, steering systems, and active safety of these vehicles. The book consists of three parts. Part one covers HDWV design history and general design methods, including basic vehicle design, and evaluating HDWV use conditions. Part one also covers general operation requirements and consumer needs, and a brief analysis of structural components of existing HDWVs and prototypes. Part two outlines information needs for designing HDWVs. Part three reviews basic theory and calculation of innovative technical solutions, as well as special requirements for component parts. This comprehensive title provides the following information about HDWVs: • History of design and manufacture. • Manufacturers’ summary design data. • Background data on sample vehicles. • Component calculation examples. • Overview of motion theory, which is useful in design and placement of bulky cargo.
Publisher: SAE International
ISBN: 0768080681
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable. Translated by SAE from Russian, this book narrates the history of HDWVs and presents the theory and calculations required to design them. It summarizes results of the authors’ academic research and experience and presents innovative technical solutions used for electric and hydrostatic transmissions, steering systems, and active safety of these vehicles. The book consists of three parts. Part one covers HDWV design history and general design methods, including basic vehicle design, and evaluating HDWV use conditions. Part one also covers general operation requirements and consumer needs, and a brief analysis of structural components of existing HDWVs and prototypes. Part two outlines information needs for designing HDWVs. Part three reviews basic theory and calculation of innovative technical solutions, as well as special requirements for component parts. This comprehensive title provides the following information about HDWVs: • History of design and manufacture. • Manufacturers’ summary design data. • Background data on sample vehicles. • Component calculation examples. • Overview of motion theory, which is useful in design and placement of bulky cargo.
Heavy-Duty Electric Vehicles
Author: Shashank Arora
Publisher: Butterworth-Heinemann
ISBN: 0128181273
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Heavy-Duty Electric Vehicles: From Concept to Reality presents a step-by-step design and development guide for heavy-duty electric vehicles. It also offers practical insights based on the commercial application of an electric city bus. Heavy-duty electric vehicle design is challenging due to a lack of clear understanding of the government policies, R&D directions and uncertainty around the performance of various subsystems in an electric powertrain. Therefore, this book discusses key technical aspects of motors, power electronics, batteries and vehicle control systems, and outlines the system integration strategies necessary for design and safe operation of electric vehicles in practice. This comprehensive book serves as a guide to engineers and decision makers involved in electric vehicle development programs and assists them in finding the suitable electric powertrain solution for a given heavy-duty vehicle application. - Offers an overview of various standards and regulations that guide the electric vehicle design process and a comprehensive discussion on various government policies and incentive schemes propelling the growth of heavy electric vehicle markets across the world - Provides a comparative evaluation of different electric drivetrain concepts and a step-by-step power calculation guide for heavy-duty electric powertrain - Explains material selection and manufacturing methods for next generation batteries - Discusses key elements and design rules for creating a robust high voltage energy storage system, appropriate packaging and its support systems including charging network - Includes a concise description of torque mapping, power management and fault handling strategies for inverter drive and control systems - Features case studies to better understand complex topics like charging system requirements and vehicle control system diagnostics
Publisher: Butterworth-Heinemann
ISBN: 0128181273
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Heavy-Duty Electric Vehicles: From Concept to Reality presents a step-by-step design and development guide for heavy-duty electric vehicles. It also offers practical insights based on the commercial application of an electric city bus. Heavy-duty electric vehicle design is challenging due to a lack of clear understanding of the government policies, R&D directions and uncertainty around the performance of various subsystems in an electric powertrain. Therefore, this book discusses key technical aspects of motors, power electronics, batteries and vehicle control systems, and outlines the system integration strategies necessary for design and safe operation of electric vehicles in practice. This comprehensive book serves as a guide to engineers and decision makers involved in electric vehicle development programs and assists them in finding the suitable electric powertrain solution for a given heavy-duty vehicle application. - Offers an overview of various standards and regulations that guide the electric vehicle design process and a comprehensive discussion on various government policies and incentive schemes propelling the growth of heavy electric vehicle markets across the world - Provides a comparative evaluation of different electric drivetrain concepts and a step-by-step power calculation guide for heavy-duty electric powertrain - Explains material selection and manufacturing methods for next generation batteries - Discusses key elements and design rules for creating a robust high voltage energy storage system, appropriate packaging and its support systems including charging network - Includes a concise description of torque mapping, power management and fault handling strategies for inverter drive and control systems - Features case studies to better understand complex topics like charging system requirements and vehicle control system diagnostics
Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems
Author: Gus Wright
Publisher: Jones & Bartlett Learning
ISBN: 1284150933
Category : Transportation
Languages : en
Pages : 1929
Book Description
"Thoroughly updated and expanded, 'Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems, Second Edition' offers comprehensive coverage of basic concepts building up to advanced instruction on the latest technology, including distributed electronic control systems, energy-saving technologies, and automated driver-assistance systems. Now organized by outcome-based objectives to improve instructional clarity and adaptability and presented in a more readable format, all content seamlessly aligns with the latest ASE Medium-Heavy Truck Program requirements for MTST." --Back cover.
Publisher: Jones & Bartlett Learning
ISBN: 1284150933
Category : Transportation
Languages : en
Pages : 1929
Book Description
"Thoroughly updated and expanded, 'Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems, Second Edition' offers comprehensive coverage of basic concepts building up to advanced instruction on the latest technology, including distributed electronic control systems, energy-saving technologies, and automated driver-assistance systems. Now organized by outcome-based objectives to improve instructional clarity and adaptability and presented in a more readable format, all content seamlessly aligns with the latest ASE Medium-Heavy Truck Program requirements for MTST." --Back cover.
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
Author: Mehrdad Ehsani
Publisher: CRC Press
ISBN: 0429998244
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.
Publisher: CRC Press
ISBN: 0429998244
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251
Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251
Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
Lithium Process Chemistry
Author: Alexandre Chagnes
Publisher: Elsevier
ISBN: 0128016868
Category : Science
Languages : en
Pages : 313
Book Description
Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. The book provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on Li production, Li-ion battery technologies, and lithium battery recycling processes that is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances. The book represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries - Represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Ideal for both electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries - Presents recent developments, as well as challenges in lithium production and lithium-ion battery technologies and their recycling - Covers examples of Li processes production with schematics, also including numerous graphical presentations of different battery systems and their electrochemical performances
Publisher: Elsevier
ISBN: 0128016868
Category : Science
Languages : en
Pages : 313
Book Description
Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. The book provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on Li production, Li-ion battery technologies, and lithium battery recycling processes that is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances. The book represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries - Represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Ideal for both electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries - Presents recent developments, as well as challenges in lithium production and lithium-ion battery technologies and their recycling - Covers examples of Li processes production with schematics, also including numerous graphical presentations of different battery systems and their electrochemical performances
Electric, Hybrid, and Fuel Cell Vehicles
Author: Amgad Elgowainy
Publisher: Springer
ISBN: 9781071614914
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This volume of "Encyclopedia of Sustainability Science and Technology, Second Edition," covers the electrification of vehicles, which is key to a sustainable future of transportation in both light-duty and heavy-duty vehicle sectors to address global concerns of climate change, air pollutant emissions, energy efficiency and energy security. Vehicle electrification includes several existing and emerging technologies and powertrain architectures such as conventional hybrid electric vehicles (HEVs), plug-in hybrids with various electric driving range, short- and long-range battery electric vehicles, as well as hydrogen fuel cell electric vehicles (FCEVs). Electrification will be key to connected autonomous vehicles, which are perceived to improve mobility, increase safety, reduce energy consumption and infrastructure costs, improve productivity, decrease traffic congestion and increase customer satisfaction. While electrification of vehicle technologies is relatively mature, technology improvement and economies of scale are needed to compete against incumbent technologies and to realize their benefits in the marketplace. Significant infrastructure development is needed in the case of hydrogen fuel cell vehicles and to a lesser extent for plug-in electric vehicles. Vehicle efficiency improvement is sought through a combination of several approaches, including weight reduction, engine downsizing, increased engine compression ratio with high octane fuels, and the use of compression ignition engines with low octane fuels. Liquid hydrocarbon fuels are needed in applications where high storage energy density is required such as long-haul class-8 combination heavy-duty trucks. Shared mobility is another emerging concept that enables access to transportation services on an as-needed basis. This approach can enhance accessibility to transportation, decrease number of vehicles on the road, reduce energy use and impact on the environment, reduce cost of transportation and the need for parking, and reduce transportation time between origin and destination. In all, the reader will receive a comprehensive introduction to electric vehicles and technology trends, including energy storage, in light-, medium-, and heavy-duty sectors, as well as the infrastructure development that will be required to realize these benefits for society.
Publisher: Springer
ISBN: 9781071614914
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This volume of "Encyclopedia of Sustainability Science and Technology, Second Edition," covers the electrification of vehicles, which is key to a sustainable future of transportation in both light-duty and heavy-duty vehicle sectors to address global concerns of climate change, air pollutant emissions, energy efficiency and energy security. Vehicle electrification includes several existing and emerging technologies and powertrain architectures such as conventional hybrid electric vehicles (HEVs), plug-in hybrids with various electric driving range, short- and long-range battery electric vehicles, as well as hydrogen fuel cell electric vehicles (FCEVs). Electrification will be key to connected autonomous vehicles, which are perceived to improve mobility, increase safety, reduce energy consumption and infrastructure costs, improve productivity, decrease traffic congestion and increase customer satisfaction. While electrification of vehicle technologies is relatively mature, technology improvement and economies of scale are needed to compete against incumbent technologies and to realize their benefits in the marketplace. Significant infrastructure development is needed in the case of hydrogen fuel cell vehicles and to a lesser extent for plug-in electric vehicles. Vehicle efficiency improvement is sought through a combination of several approaches, including weight reduction, engine downsizing, increased engine compression ratio with high octane fuels, and the use of compression ignition engines with low octane fuels. Liquid hydrocarbon fuels are needed in applications where high storage energy density is required such as long-haul class-8 combination heavy-duty trucks. Shared mobility is another emerging concept that enables access to transportation services on an as-needed basis. This approach can enhance accessibility to transportation, decrease number of vehicles on the road, reduce energy use and impact on the environment, reduce cost of transportation and the need for parking, and reduce transportation time between origin and destination. In all, the reader will receive a comprehensive introduction to electric vehicles and technology trends, including energy storage, in light-, medium-, and heavy-duty sectors, as well as the infrastructure development that will be required to realize these benefits for society.
Review of the 21st Century Truck Partnership
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309122082
Category : Transportation
Languages : en
Pages : 130
Book Description
The 21st Century Truck Partnership (21CTP), a cooperative research and development partnership formed by four federal agencies with 15 industrial partners, was launched in the year 2000 with high hopes that it would dramatically advance the technologies used in trucks and buses, yielding a cleaner, safer, more efficient generation of vehicles. Review of the 21st Century Truck Partnership critically examines and comments on the overall adequacy and balance of the 21CTP. The book reviews how well the program has accomplished its goals, evaluates progress in the program, and makes recommendations to improve the likelihood of the Partnership meeting its goals. Key recommendations of the book include that the 21CTP should be continued, but the future program should be revised and better balanced. A clearer goal setting strategy should be developed, and the goals should be clearly stated in measurable engineering terms and reviewed periodically so as to be based on the available funds.
Publisher: National Academies Press
ISBN: 0309122082
Category : Transportation
Languages : en
Pages : 130
Book Description
The 21st Century Truck Partnership (21CTP), a cooperative research and development partnership formed by four federal agencies with 15 industrial partners, was launched in the year 2000 with high hopes that it would dramatically advance the technologies used in trucks and buses, yielding a cleaner, safer, more efficient generation of vehicles. Review of the 21st Century Truck Partnership critically examines and comments on the overall adequacy and balance of the 21CTP. The book reviews how well the program has accomplished its goals, evaluates progress in the program, and makes recommendations to improve the likelihood of the Partnership meeting its goals. Key recommendations of the book include that the 21CTP should be continued, but the future program should be revised and better balanced. A clearer goal setting strategy should be developed, and the goals should be clearly stated in measurable engineering terms and reviewed periodically so as to be based on the available funds.
Vehicular Electric Power Systems
Author: Ali Emadi
Publisher: CRC Press
ISBN: 9780824747510
Category : Technology & Engineering
Languages : en
Pages : 520
Book Description
Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures
Publisher: CRC Press
ISBN: 9780824747510
Category : Technology & Engineering
Languages : en
Pages : 520
Book Description
Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures