Author: Richard W. Hamming
Publisher: Stripe Press
ISBN: 195395331X
Category : Computers
Languages : en
Pages : 327
Book Description
A groundbreaking treatise by one of the great mathematicians of our time, who argues that highly effective thinking can be learned. What spurs on and inspires a great idea? Can we train ourselves to think in a way that will enable world-changing understandings and insights to emerge? Richard Hamming said we can, and first inspired a generation of engineers, scientists, and researchers in 1986 with "You and Your Research," an electrifying sermon on why some scientists do great work, why most don't, why he did, and why you should, too. The Art of Doing Science and Engineering is the full expression of what "You and Your Research" outlined. It's a book about thinking; more specifically, a style of thinking by which great ideas are conceived. The book is filled with stories of great people performing mighty deeds––but they are not meant to simply be admired. Instead, they are to be aspired to, learned from, and surpassed. Hamming consistently returns to Shannon’s information theory, Einstein’s relativity, Grace Hopper’s work on high-level programming, Kaiser’s work on digital fillers, and his own error-correcting codes. He also recounts a number of his spectacular failures as clear examples of what to avoid. Originally published in 1996 and adapted from a course that Hamming taught at the U.S. Naval Postgraduate School, this edition includes an all-new foreword by designer, engineer, and founder of Dynamicland Bret Victor, and more than 70 redrawn graphs and charts. The Art of Doing Science and Engineering is a reminder that a childlike capacity for learning and creativity are accessible to everyone. Hamming was as much a teacher as a scientist, and having spent a lifetime forming and confirming a theory of great people, he prepares the next generation for even greater greatness.
Street-Fighting Mathematics
Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262265591
Category : Education
Languages : en
Pages : 152
Book Description
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Publisher: MIT Press
ISBN: 0262265591
Category : Education
Languages : en
Pages : 152
Book Description
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
The Art of Insight
Author: Charles Kiefer
Publisher: Berrett-Koehler Publishers
ISBN: 1609948114
Category : Political Science
Languages : en
Pages : 177
Book Description
A practical guide to fostering innovative insights and solutions for yourself and your organization—including online skill-building exercises. We have all experienced it: the jolt of an insight arriving like a thunderclap, unexpectedly and without warning. But what if insights could be accessed more reliably? Drawing on years of research, reflection, and experiences with colleagues, friends, and clients, Charles Kiefer and Malcolm Constable present a thorough, pragmatic approach for dependably generating fresh thoughts and perspectives. The Art of Insight features helpful exercises both in the book and online. Readers will develop their own personal approach to cultivating insights, allowing them to solve long-standing problems with confidence and ease. “Creating insights isn't a magical process—this book provides a practical framework for generating insights for yourself and your organization. We've used many of these techniques with our innovation teams and they work.” —Wayne Delker, Chief Innovation Officer and Senior Vice President, The Clorox Company
Publisher: Berrett-Koehler Publishers
ISBN: 1609948114
Category : Political Science
Languages : en
Pages : 177
Book Description
A practical guide to fostering innovative insights and solutions for yourself and your organization—including online skill-building exercises. We have all experienced it: the jolt of an insight arriving like a thunderclap, unexpectedly and without warning. But what if insights could be accessed more reliably? Drawing on years of research, reflection, and experiences with colleagues, friends, and clients, Charles Kiefer and Malcolm Constable present a thorough, pragmatic approach for dependably generating fresh thoughts and perspectives. The Art of Insight features helpful exercises both in the book and online. Readers will develop their own personal approach to cultivating insights, allowing them to solve long-standing problems with confidence and ease. “Creating insights isn't a magical process—this book provides a practical framework for generating insights for yourself and your organization. We've used many of these techniques with our innovation teams and they work.” —Wayne Delker, Chief Innovation Officer and Senior Vice President, The Clorox Company
From Insight to Innovation
Author: David P. Billington, Jr.
Publisher: MIT Press
ISBN: 0262359685
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
The engineering ideas behind key twentieth-century technical innovations, from great dams and highways to the jet engine, the transistor, the microchip, and the computer. Technology is essential to modern life, yet few of us are technology-literate enough to know much about the engineering that underpins it. In this book, David P. Billington, Jr., offers accessible accounts of the key twentieth-century engineering innovations that brought us into the twenty-first century. Billington examines a series of engineering advances--from Hoover Dam and jet engines to the transistor, the microchip, the computer, and the internet--and explains how they came about and how they work.
Publisher: MIT Press
ISBN: 0262359685
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
The engineering ideas behind key twentieth-century technical innovations, from great dams and highways to the jet engine, the transistor, the microchip, and the computer. Technology is essential to modern life, yet few of us are technology-literate enough to know much about the engineering that underpins it. In this book, David P. Billington, Jr., offers accessible accounts of the key twentieth-century engineering innovations that brought us into the twenty-first century. Billington examines a series of engineering advances--from Hoover Dam and jet engines to the transistor, the microchip, the computer, and the internet--and explains how they came about and how they work.
The Art of Insight in Science and Engineering
Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262526549
Category : Science
Languages : en
Pages : 409
Book Description
Tools to make hard problems easier to solve. In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight range of birds and planes and the strength of chemical bonds, understand the physics of pianos and xylophones, and explain why skies are blue and sunsets are red. The Art of Insight in Science and Engineering will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Publisher: MIT Press
ISBN: 0262526549
Category : Science
Languages : en
Pages : 409
Book Description
Tools to make hard problems easier to solve. In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight range of birds and planes and the strength of chemical bonds, understand the physics of pianos and xylophones, and explain why skies are blue and sunsets are red. The Art of Insight in Science and Engineering will appear in print and online under a Creative Commons Noncommercial Share Alike license.
The Science of Paintings
Author: W.Stanley Jr. Taft
Publisher: Springer Science & Business Media
ISBN: 038721741X
Category : Art
Languages : en
Pages : 264
Book Description
The physics and materials science behind paintings: the pigments, binders, canvas, and varnish that go into making a painting appear the way it does. The text discusses the physical principles behind the colors seen and how these change with illumination, the various types of paint and binders used in both old and modern paintings, and the optics and microscopic structure of paint films. Chapters on dating, binders, and dendochronology have been contributed by experts in the respective fields.
Publisher: Springer Science & Business Media
ISBN: 038721741X
Category : Art
Languages : en
Pages : 264
Book Description
The physics and materials science behind paintings: the pigments, binders, canvas, and varnish that go into making a painting appear the way it does. The text discusses the physical principles behind the colors seen and how these change with illumination, the various types of paint and binders used in both old and modern paintings, and the optics and microscopic structure of paint films. Chapters on dating, binders, and dendochronology have been contributed by experts in the respective fields.
Engineering and the Mind's Eye
Author: Eugene S. Ferguson
Publisher: MIT Press
ISBN: 9780262560788
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
In this insightful and incisive essay, Eugene Ferguson demonstrates that good engineering is as much a matter of intuition and nonverbal thinking as of equations and computation. He argues that a system of engineering education that ignores nonverbal thinking will produce engineers who are dangerously ignorant of the many ways in which the real world differs from the mathematical models constructed in academic minds.
Publisher: MIT Press
ISBN: 9780262560788
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
In this insightful and incisive essay, Eugene Ferguson demonstrates that good engineering is as much a matter of intuition and nonverbal thinking as of equations and computation. He argues that a system of engineering education that ignores nonverbal thinking will produce engineers who are dangerously ignorant of the many ways in which the real world differs from the mathematical models constructed in academic minds.
Science from Sight to Insight
Author: Alan G. Gross
Publisher: University of Chicago Press
ISBN: 9780226068206
Category : Science
Languages : en
Pages : 0
Book Description
John Dalton’s molecular structures. Scatter plots and geometric diagrams. Watson and Crick’s double helix. The way in which scientists understand the world—and the key concepts that explain it—is undeniably bound up in not only words, but images. Moreover, from PowerPoint presentations to articles in academic journals, scientific communication routinely relies on the relationship between words and pictures. In Science from Sight to Insight, Alan G. Gross and Joseph E. Harmon present a short history of the scientific visual, and then formulate a theory about the interaction between the visual and textual. With great insight and admirable rigor, the authors argue that scientific meaning itself comes from the complex interplay between the verbal and the visual in the form of graphs, diagrams, maps, drawings, and photographs. The authors use a variety of tools to probe the nature of scientific images, from Heidegger’s philosophy of science to Peirce’s semiotics of visual communication. Their synthesis of these elements offers readers an examination of scientific visuals at a much deeper and more meaningful level than ever before.
Publisher: University of Chicago Press
ISBN: 9780226068206
Category : Science
Languages : en
Pages : 0
Book Description
John Dalton’s molecular structures. Scatter plots and geometric diagrams. Watson and Crick’s double helix. The way in which scientists understand the world—and the key concepts that explain it—is undeniably bound up in not only words, but images. Moreover, from PowerPoint presentations to articles in academic journals, scientific communication routinely relies on the relationship between words and pictures. In Science from Sight to Insight, Alan G. Gross and Joseph E. Harmon present a short history of the scientific visual, and then formulate a theory about the interaction between the visual and textual. With great insight and admirable rigor, the authors argue that scientific meaning itself comes from the complex interplay between the verbal and the visual in the form of graphs, diagrams, maps, drawings, and photographs. The authors use a variety of tools to probe the nature of scientific images, from Heidegger’s philosophy of science to Peirce’s semiotics of visual communication. Their synthesis of these elements offers readers an examination of scientific visuals at a much deeper and more meaningful level than ever before.
Creating Scientific Concepts
Author: Nancy J Nersessian
Publisher: MIT Press
ISBN: 0262293455
Category : Medical
Languages : en
Pages : 267
Book Description
An account that analyzes the dynamic reasoning processes implicated in a fundamental problem of creativity in science: how does genuine novelty emerge from existing representations? How do novel scientific concepts arise? In Creating Scientific Concepts, Nancy Nersessian seeks to answer this central but virtually unasked question in the problem of conceptual change. She argues that the popular image of novel concepts and profound insight bursting forth in a blinding flash of inspiration is mistaken. Instead, novel concepts are shown to arise out of the interplay of three factors: an attempt to solve specific problems; the use of conceptual, analytical, and material resources provided by the cognitive-social-cultural context of the problem; and dynamic processes of reasoning that extend ordinary cognition. Focusing on the third factor, Nersessian draws on cognitive science research and historical accounts of scientific practices to show how scientific and ordinary cognition lie on a continuum, and how problem-solving practices in one illuminate practices in the other. Her investigations of scientific practices show conceptual change as deriving from the use of analogies, imagistic representations, and thought experiments, integrated with experimental investigations and mathematical analyses. She presents a view of constructed models as hybrid objects, serving as intermediaries between targets and analogical sources in bootstrapping processes. Extending these results, she argues that these complex cognitive operations and structures are not mere aids to discovery, but that together they constitute a powerful form of reasoning—model-based reasoning—that generates novelty. This new approach to mental modeling and analogy, together with Nersessian's cognitive-historical approach, make Creating Scientific Concepts equally valuable to cognitive science and philosophy of science.
Publisher: MIT Press
ISBN: 0262293455
Category : Medical
Languages : en
Pages : 267
Book Description
An account that analyzes the dynamic reasoning processes implicated in a fundamental problem of creativity in science: how does genuine novelty emerge from existing representations? How do novel scientific concepts arise? In Creating Scientific Concepts, Nancy Nersessian seeks to answer this central but virtually unasked question in the problem of conceptual change. She argues that the popular image of novel concepts and profound insight bursting forth in a blinding flash of inspiration is mistaken. Instead, novel concepts are shown to arise out of the interplay of three factors: an attempt to solve specific problems; the use of conceptual, analytical, and material resources provided by the cognitive-social-cultural context of the problem; and dynamic processes of reasoning that extend ordinary cognition. Focusing on the third factor, Nersessian draws on cognitive science research and historical accounts of scientific practices to show how scientific and ordinary cognition lie on a continuum, and how problem-solving practices in one illuminate practices in the other. Her investigations of scientific practices show conceptual change as deriving from the use of analogies, imagistic representations, and thought experiments, integrated with experimental investigations and mathematical analyses. She presents a view of constructed models as hybrid objects, serving as intermediaries between targets and analogical sources in bootstrapping processes. Extending these results, she argues that these complex cognitive operations and structures are not mere aids to discovery, but that together they constitute a powerful form of reasoning—model-based reasoning—that generates novelty. This new approach to mental modeling and analogy, together with Nersessian's cognitive-historical approach, make Creating Scientific Concepts equally valuable to cognitive science and philosophy of science.
MATERIALS SCIENCE AND ENGINEERING
Author: V. RAGHAVAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120350928
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This well-established and widely adopted book, now in its Sixth Edition, provides a thorough analysis of the subject in an easy-to-read style. It analyzes, systematically and logically, the basic concepts and their applications to enable the students to comprehend the subject with ease. The book begins with a clear exposition of the background topics in chemical equilibrium, kinetics, atomic structure and chemical bonding. Then follows a detailed discussion on the structure of solids, crystal imperfections, phase diagrams, solid-state diffusion and phase transformations. This provides a deep insight into the structural control necessary for optimizing the various properties of materials. The mechanical properties covered include elastic, anelastic and viscoelastic behaviour, plastic deformation, creep and fracture phenomena. The next four chapters are devoted to a detailed description of electrical conduction, superconductivity, semiconductors, and magnetic and dielectric properties. The final chapter on ‘Nanomaterials’ is an important addition to the sixth edition. It describes the state-of-art developments in this new field. This eminently readable and student-friendly text not only provides a masterly analysis of all the relevant topics, but also makes them comprehensible to the students through the skillful use of well-drawn diagrams, illustrative tables, worked-out examples, and in many other ways. The book is primarily intended for undergraduate students of all branches of engineering (B.E./B.Tech.) and postgraduate students of Physics, Chemistry and Materials Science. KEY FEATURES • All relevant units and constants listed at the beginning of each chapter • A note on SI units and a full table of conversion factors at the beginning • A new chapter on ‘Nanomaterials’ describing the state-of-art information • Examples with solutions and problems with answers • About 350 multiple choice questions with answers
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120350928
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This well-established and widely adopted book, now in its Sixth Edition, provides a thorough analysis of the subject in an easy-to-read style. It analyzes, systematically and logically, the basic concepts and their applications to enable the students to comprehend the subject with ease. The book begins with a clear exposition of the background topics in chemical equilibrium, kinetics, atomic structure and chemical bonding. Then follows a detailed discussion on the structure of solids, crystal imperfections, phase diagrams, solid-state diffusion and phase transformations. This provides a deep insight into the structural control necessary for optimizing the various properties of materials. The mechanical properties covered include elastic, anelastic and viscoelastic behaviour, plastic deformation, creep and fracture phenomena. The next four chapters are devoted to a detailed description of electrical conduction, superconductivity, semiconductors, and magnetic and dielectric properties. The final chapter on ‘Nanomaterials’ is an important addition to the sixth edition. It describes the state-of-art developments in this new field. This eminently readable and student-friendly text not only provides a masterly analysis of all the relevant topics, but also makes them comprehensible to the students through the skillful use of well-drawn diagrams, illustrative tables, worked-out examples, and in many other ways. The book is primarily intended for undergraduate students of all branches of engineering (B.E./B.Tech.) and postgraduate students of Physics, Chemistry and Materials Science. KEY FEATURES • All relevant units and constants listed at the beginning of each chapter • A note on SI units and a full table of conversion factors at the beginning • A new chapter on ‘Nanomaterials’ describing the state-of-art information • Examples with solutions and problems with answers • About 350 multiple choice questions with answers