Author: Gottlob Frege
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Frege, Dedekind, and Peano on the Foundations of Arithmetic (Routledge Revivals)
Author: Donald Gillies
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Foundations of Arithmetic Differential Geometry
Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Handbook of Proof Theory
Author: S.R. Buss
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
The Foundations of Mathematics
Author: Ian Stewart
Publisher: Oxford University Press, USA
ISBN: 019870643X
Category : Mathematics
Languages : en
Pages : 409
Book Description
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.
Publisher: Oxford University Press, USA
ISBN: 019870643X
Category : Mathematics
Languages : en
Pages : 409
Book Description
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.
Harvey Friedman's Research on the Foundations of Mathematics
Author: L.A. Harrington
Publisher: Elsevier
ISBN: 9780080960401
Category : Mathematics
Languages : en
Pages : 407
Book Description
This volume discusses various aspects of Harvey Friedman's research in the foundations of mathematics over the past fifteen years. It should appeal to a wide audience of mathematicians, computer scientists, and mathematically oriented philosophers.
Publisher: Elsevier
ISBN: 9780080960401
Category : Mathematics
Languages : en
Pages : 407
Book Description
This volume discusses various aspects of Harvey Friedman's research in the foundations of mathematics over the past fifteen years. It should appeal to a wide audience of mathematicians, computer scientists, and mathematically oriented philosophers.
The Foundations of Mathematics in the Theory of Sets
Author: John P. Mayberry
Publisher: Cambridge University Press
ISBN: 9780521770347
Category : Mathematics
Languages : en
Pages : 454
Book Description
This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.
Publisher: Cambridge University Press
ISBN: 9780521770347
Category : Mathematics
Languages : en
Pages : 454
Book Description
This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.
Frege
Author: Michael Dummett
Publisher: Harvard University Press
ISBN: 9780674319356
Category : Mathematics
Languages : en
Pages : 364
Book Description
No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.
Publisher: Harvard University Press
ISBN: 9780674319356
Category : Mathematics
Languages : en
Pages : 364
Book Description
No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.