Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics PDF Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674

Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics PDF Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 9780486671642
Category : Science
Languages : en
Pages : 678

Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics PDF Author: Martin C. Gutzwiller
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445

Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.

Mathematical Topics Between Classical and Quantum Mechanics

Mathematical Topics Between Classical and Quantum Mechanics PDF Author: Nicholas P. Landsman
Publisher: Springer Science & Business Media
ISBN: 146121680X
Category : Science
Languages : en
Pages : 547

Book Description
This monograph draws on two traditions: the algebraic formulation of quantum mechanics as well as quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability, which leads on to a discussion of the theory of quantization and the classical limit from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. Accessible to mathematicians with some prior knowledge of classical and quantum mechanics, and to mathematical physicists and theoretical physicists with some background in functional analysis.

Quantum Theory for Mathematicians

Quantum Theory for Mathematicians PDF Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566

Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Mathematical Methods of Classical Mechanics

Mathematical Methods of Classical Mechanics PDF Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530

Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Mathematical Methods In Classical And Quantum Physics

Mathematical Methods In Classical And Quantum Physics PDF Author: Tulsi Dass
Publisher: Universities Press
ISBN: 9788173710896
Category : Mathematical physics
Languages : en
Pages : 718

Book Description
This book is intended to provide an adequate background for various theortical physics courses, especially those in classical mechanics, electrodynamics, quatum mechanics and statistical physics. Each topic is dealt with in a generally self-contained manner and the text is interspersed with a number of solved examples ad a large number of exercise problems.

Geometric Phases in Classical and Quantum Mechanics

Geometric Phases in Classical and Quantum Mechanics PDF Author: Dariusz Chruscinski
Publisher: Springer Science & Business Media
ISBN: 0817681760
Category : Mathematics
Languages : en
Pages : 346

Book Description
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians PDF Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410

Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.