Author: Paul Orland
Publisher: Manning Publications
ISBN: 1617295353
Category : Computers
Languages : en
Pages : 686
Book Description
In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Why Study Mathematics?
Author: Vicky Neale
Publisher: London Publishing Partnership
ISBN: 1913019128
Category : Mathematics
Languages : en
Pages : 210
Book Description
Considering studying mathematics at university? Wondering whether a mathematics degree will get you a good job, and what you might earn? Want to know what it's actually like to study mathematics at degree level? This book tells you what you need to know. Studying any subject at degree level is an investment in the future that involves significant cost. Now more than ever, students and their parents need to weigh up the potential benefits of university courses. That's where the Why Study series comes in. This series of books, aimed at students, parents and teachers, explains in practical terms the range and scope of an academic subject at university level and where it can lead in terms of careers or further study. Each book sets out to enthuse the reader about its subject and answer the crucial questions that a college prospectus does not.
Publisher: London Publishing Partnership
ISBN: 1913019128
Category : Mathematics
Languages : en
Pages : 210
Book Description
Considering studying mathematics at university? Wondering whether a mathematics degree will get you a good job, and what you might earn? Want to know what it's actually like to study mathematics at degree level? This book tells you what you need to know. Studying any subject at degree level is an investment in the future that involves significant cost. Now more than ever, students and their parents need to weigh up the potential benefits of university courses. That's where the Why Study series comes in. This series of books, aimed at students, parents and teachers, explains in practical terms the range and scope of an academic subject at university level and where it can lead in terms of careers or further study. Each book sets out to enthuse the reader about its subject and answer the crucial questions that a college prospectus does not.
How to Think Like a Mathematician
Author: Kevin Houston
Publisher: Cambridge University Press
ISBN: 1139477056
Category : Mathematics
Languages : en
Pages : 341
Book Description
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
Publisher: Cambridge University Press
ISBN: 1139477056
Category : Mathematics
Languages : en
Pages : 341
Book Description
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
How to Think About Analysis
Author: Lara Alcock
Publisher: OUP Oxford
ISBN: 0191035378
Category : Mathematics
Languages : en
Pages : 272
Book Description
Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
Publisher: OUP Oxford
ISBN: 0191035378
Category : Mathematics
Languages : en
Pages : 272
Book Description
Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
101 Careers in Mathematics: Fourth Edition
Author: Deanna Haunsperger
Publisher: American Mathematical Soc.
ISBN: 1470450852
Category : Mathematics
Languages : en
Pages : 296
Book Description
What can you do with a degree in math? This book addresses this question with 125 career profiles written by people with degrees and backgrounds in mathematics. With job titles ranging from sports analyst to science writer to inventory specialist to CEO, the volume provides ample evidence that one really can do nearly anything with a degree in mathematics. These professionals share how their mathematical education shaped their career choices and how mathematics, or the skills acquired in a mathematics education, is used in their daily work. The degrees earned by the authors profiled here are a good mix of bachelors, masters, and PhDs. With 114 completely new profiles since the third edition, the careers featured within accurately reflect current trends in the job market. College mathematics faculty, high school teachers, and career counselors will all find this a useful resource. Career centers, mathematics departments, and student lounges should have a copy available for student browsing. In addition to the career profiles, the volume contains essays from career counseling professionals on the topics of job-searching, interviewing, and applying to graduate school.
Publisher: American Mathematical Soc.
ISBN: 1470450852
Category : Mathematics
Languages : en
Pages : 296
Book Description
What can you do with a degree in math? This book addresses this question with 125 career profiles written by people with degrees and backgrounds in mathematics. With job titles ranging from sports analyst to science writer to inventory specialist to CEO, the volume provides ample evidence that one really can do nearly anything with a degree in mathematics. These professionals share how their mathematical education shaped their career choices and how mathematics, or the skills acquired in a mathematics education, is used in their daily work. The degrees earned by the authors profiled here are a good mix of bachelors, masters, and PhDs. With 114 completely new profiles since the third edition, the careers featured within accurately reflect current trends in the job market. College mathematics faculty, high school teachers, and career counselors will all find this a useful resource. Career centers, mathematics departments, and student lounges should have a copy available for student browsing. In addition to the career profiles, the volume contains essays from career counseling professionals on the topics of job-searching, interviewing, and applying to graduate school.
Mathematics for Human Flourishing
Author: Francis Su
Publisher: Yale University Press
ISBN: 0300237138
Category : Mathematics
Languages : en
Pages : 287
Book Description
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
Publisher: Yale University Press
ISBN: 0300237138
Category : Mathematics
Languages : en
Pages : 287
Book Description
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
Set Theory and the Continuum Hypothesis
Author: Paul J. Cohen
Publisher: Courier Corporation
ISBN: 0486469212
Category : Mathematics
Languages : en
Pages : 196
Book Description
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Publisher: Courier Corporation
ISBN: 0486469212
Category : Mathematics
Languages : en
Pages : 196
Book Description
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
On the Study and Difficulties of Mathematics
Author: Augustus De Morgan
Publisher: Courier Corporation
ISBN: 0486155153
Category : Mathematics
Languages : en
Pages : 308
Book Description
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
Publisher: Courier Corporation
ISBN: 0486155153
Category : Mathematics
Languages : en
Pages : 308
Book Description
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
How Not to Be Wrong
Author: Jordan Ellenberg
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480
Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480
Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Global Calculus
Author: S. Ramanan
Publisher: American Mathematical Soc.
ISBN: 0821837028
Category : Mathematics
Languages : en
Pages : 330
Book Description
The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.
Publisher: American Mathematical Soc.
ISBN: 0821837028
Category : Mathematics
Languages : en
Pages : 330
Book Description
The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.