Introduction to Calculus and Analysis II/1

Introduction to Calculus and Analysis II/1 PDF Author: Richard Courant
Publisher: Springer Science & Business Media
ISBN: 3642571492
Category : Mathematics
Languages : en
Pages : 585

Book Description
From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991

Introduction to Calculus and Analysis

Introduction to Calculus and Analysis PDF Author: Courant Institute of Mathematical Sciences Richard Courant
Publisher:
ISBN: 9783642586057
Category :
Languages : en
Pages : 688

Book Description
From the Preface: (...) The book is addressed to students on various levels, to mathematicians, scientists, engineers. It does not pretend to make the subject easy by glossing over difficulties, but rather tries to help the genuinely interested reader by throwing light on the interconnections and purposes of the whole. Instead of obstructing the access to the wealth of facts by lengthy discussions of a fundamental nature we have sometimes postponed such discussions to appendices in the various chapters. Numerous examples and problems are given at the end of various chapters. Some are challenging, some are even difficu

Calculus and Analysis

Calculus and Analysis PDF Author: Horst R. Beyer
Publisher: John Wiley & Sons
ISBN: 0470617950
Category : Mathematics
Languages : en
Pages : 695

Book Description
A NEW APPROACH TO CALCULUS THAT BETTER ENABLES STUDENTS TO PROGRESS TO MORE ADVANCED COURSES AND APPLICATIONS Calculus and Analysis: A Combined Approach bridges the gap between mathematical thinking skills and advanced calculus topics by providing an introduction to the key theory for understanding and working with applications in engineering and the sciences. Through a modern approach that utilizes fully calculated problems, the book addresses the importance of calculus and analysis in the applied sciences, with a focus on differential equations. Differing from the common classical approach to the topic, this book presents a modern perspective on calculus that follows motivations from Otto Toeplitz's famous genetic model. The result is an introduction that leads to great simplifications and provides a focused treatment commonly found in the applied sciences, particularly differential equations. The author begins with a short introduction to elementary mathematical logic. Next, the book explores the concept of sets and maps, providing readers with a strong foundation for understanding and solving modern mathematical problems. Ensuring a complete presentation, topics are uniformly presented in chapters that consist of three parts: Introductory Motivations presents historical mathematical problems or problems arising from applications that led to the development of mathematical solutions Theory provides rigorous development of the essential parts of the machinery of analysis; proofs are intentionally detailed, but simplified as much as possible to aid reader comprehension Examples and Problems promotes problem-solving skills through application-based exercises that emphasize theoretical mechanics, general relativity, and quantum mechanics Calculus and Analysis: A Combined Approach is an excellent book for courses on calculus and mathematical analysis at the upper-undergraduate and graduate levels. It is also a valuable resource for engineers, physicists, mathematicians, and anyone working in the applied sciences who would like to master their understanding of basic tools in modern calculus and analysis.

Introduction to Calculus and Classical Analysis

Introduction to Calculus and Classical Analysis PDF Author: Omar Hijab
Publisher: Springer Science & Business Media
ISBN: 1441994882
Category : Mathematics
Languages : en
Pages : 370

Book Description
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.

Introduction to Analysis

Introduction to Analysis PDF Author: Arthur Mattuck
Publisher: Pearson
ISBN: 9780130811325
Category : Mathematical analysis
Languages : en
Pages : 0

Book Description
KEY BENEFIT:This new book is written in a conversational, accessible style, offering a great deal of examples. It gradually ascends in difficulty to help the student avoid sudden changes in difficulty.Discusses analysis from the start of the book, to avoid unnecessary discussion on real numbers beyond what is immediately needed. Includes simplified and meaningful proofs. Features Exercises and Problemsat the end of each chapter as well as Questionsat the end of each section with answers at the end of each chapter. Presents analysis in a unified way as the mathematics based on inequalities, estimations, and approximations.For mathematicians.

Advanced Calculus

Advanced Calculus PDF Author: Louis Brand
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 606

Book Description

Calculus on Manifolds

Calculus on Manifolds PDF Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164

Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.

Introduction to Analysis

Introduction to Analysis PDF Author: Maxwell Rosenlicht
Publisher: Courier Corporation
ISBN: 0486134687
Category : Mathematics
Languages : en
Pages : 270

Book Description
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Differential and Integral Calculus, Volume 1

Differential and Integral Calculus, Volume 1 PDF Author: Richard Courant
Publisher: John Wiley & Sons
ISBN: 1118031490
Category : Mathematics
Languages : en
Pages : 634

Book Description
The classic introduction to the fundamentals of calculus Richard Courant's classic text Differential and Integral Calculus is an essential text for those preparing for a career in physics or applied math. Volume 1 introduces the foundational concepts of "function" and "limit", and offers detailed explanations that illustrate the "why" as well as the "how". Comprehensive coverage of the basics of integrals and differentials includes their applications as well as clearly-defined techniques and essential theorems. Multiple appendices provide supplementary explanation and author notes, as well as solutions and hints for all in-text problems.

Ricci-Calculus

Ricci-Calculus PDF Author: Jan Arnoldus Schouten
Publisher: Springer Science & Business Media
ISBN: 3662129272
Category : Mathematics
Languages : en
Pages : 535

Book Description
This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and li, and this book not only gave the first systematic introduction to the kernel index method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI cal culus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applica tions have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.