Implementing Programming Languages

Implementing Programming Languages PDF Author: Aarne Ranta
Publisher:
ISBN: 9781848900646
Category : Computers
Languages : en
Pages : 224

Book Description
Implementing a programming language means bridging the gap from the programmer's high-level thinking to the machine's zeros and ones. If this is done in an efficient and reliable way, programmers can concentrate on the actual problems they have to solve, rather than on the details of machines. But understanding the whole chain from languages to machines is still an essential part of the training of any serious programmer. It will result in a more competent programmer, who will moreover be able to develop new languages. A new language is often the best way to solve a problem, and less difficult than it may sound. This book follows a theory-based practical approach, where theoretical models serve as blueprint for actual coding. The reader is guided to build compilers and interpreters in a well-understood and scalable way. The solutions are moreover portable to different implementation languages. Much of the actual code is automatically generated from a grammar of the language, by using the BNF Converter tool. The rest can be written in Haskell or Java, for which the book gives detailed guidance, but with some adaptation also in C, C++, C#, or OCaml, which are supported by the BNF Converter. The main focus of the book is on standard imperative and functional languages: a subset of C++ and a subset of Haskell are the source languages, and Java Virtual Machine is the main target. Simple Intel x86 native code compilation is shown to complete the chain from language to machine. The last chapter leaves the standard paths and explores the space of language design ranging from minimal Turing-complete languages to human-computer interaction in natural language.

Crafting Interpreters

Crafting Interpreters PDF Author: Robert Nystrom
Publisher: Genever Benning
ISBN: 0990582949
Category : Computers
Languages : en
Pages : 1021

Book Description
Despite using them every day, most software engineers know little about how programming languages are designed and implemented. For many, their only experience with that corner of computer science was a terrifying "compilers" class that they suffered through in undergrad and tried to blot from their memory as soon as they had scribbled their last NFA to DFA conversion on the final exam. That fearsome reputation belies a field that is rich with useful techniques and not so difficult as some of its practitioners might have you believe. A better understanding of how programming languages are built will make you a stronger software engineer and teach you concepts and data structures you'll use the rest of your coding days. You might even have fun. This book teaches you everything you need to know to implement a full-featured, efficient scripting language. You'll learn both high-level concepts around parsing and semantics and gritty details like bytecode representation and garbage collection. Your brain will light up with new ideas, and your hands will get dirty and calloused. Starting from main(), you will build a language that features rich syntax, dynamic typing, garbage collection, lexical scope, first-class functions, closures, classes, and inheritance. All packed into a few thousand lines of clean, fast code that you thoroughly understand because you wrote each one yourself.

Programming Language Processors in Java

Programming Language Processors in Java PDF Author: David Anthony Watt
Publisher: Pearson Education
ISBN: 9780130257864
Category : Computers
Languages : en
Pages : 470

Book Description
This book provides a gently paced introduction to techniques for implementing programming languages by means of compilers and interpreters, using the object-oriented programming language Java. The book aims to exemplify good software engineering principles at the same time as explaining the specific techniques needed to build compilers and interpreters.

Introduction to Compilers and Language Design

Introduction to Compilers and Language Design PDF Author: Douglas Thain
Publisher: Lulu.com
ISBN: 0359138047
Category : Computers
Languages : en
Pages : 248

Book Description
A compiler translates a program written in a high level language into a program written in a lower level language. For students of computer science, building a compiler from scratch is a rite of passage: a challenging and fun project that offers insight into many different aspects of computer science, some deeply theoretical, and others highly practical. This book offers a one semester introduction into compiler construction, enabling the reader to build a simple compiler that accepts a C-like language and translates it into working X86 or ARM assembly language. It is most suitable for undergraduate students who have some experience programming in C, and have taken courses in data structures and computer architecture.

Modern Compiler Implementation in C

Modern Compiler Implementation in C PDF Author: Andrew W. Appel
Publisher: Cambridge University Press
ISBN: 1107268567
Category : Computers
Languages : en
Pages : 560

Book Description
This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for a two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.

Language Implementation Patterns

Language Implementation Patterns PDF Author: Terence Parr
Publisher: Pragmatic Bookshelf
ISBN: 168050374X
Category : Computers
Languages : en
Pages : 456

Book Description
Learn to build configuration file readers, data readers, model-driven code generators, source-to-source translators, source analyzers, and interpreters. You don't need a background in computer science--ANTLR creator Terence Parr demystifies language implementation by breaking it down into the most common design patterns. Pattern by pattern, you'll learn the key skills you need to implement your own computer languages. Knowing how to create domain-specific languages (DSLs) can give you a huge productivity boost. Instead of writing code in a general-purpose programming language, you can first build a custom language tailored to make you efficient in a particular domain. The key is understanding the common patterns found across language implementations. Language Design Patterns identifies and condenses the most common design patterns, providing sample implementations of each. The pattern implementations use Java, but the patterns themselves are completely general. Some of the implementations use the well-known ANTLR parser generator, so readers will find this book an excellent source of ANTLR examples as well. But this book will benefit anyone interested in implementing languages, regardless of their tool of choice. Other language implementation books focus on compilers, which you rarely need in your daily life. Instead, Language Design Patterns shows you patterns you can use for all kinds of language applications. You'll learn to create configuration file readers, data readers, model-driven code generators, source-to-source translators, source analyzers, and interpreters. Each chapter groups related design patterns and, in each pattern, you'll get hands-on experience by building a complete sample implementation. By the time you finish the book, you'll know how to solve most common language implementation problems.

Build Your Own Programming Language

Build Your Own Programming Language PDF Author: Clinton L. Jeffery
Publisher: Packt Publishing Ltd
ISBN: 1800200331
Category : Computers
Languages : en
Pages : 495

Book Description
Written by the creator of the Unicon programming language, this book will show you how to implement programming languages to reduce the time and cost of creating applications for new or specialized areas of computing Key Features Reduce development time and solve pain points in your application domain by building a custom programming language Learn how to create parsers, code generators, file readers, analyzers, and interpreters Create an alternative to frameworks and libraries to solve domain-specific problems Book Description The need for different types of computer languages is growing rapidly and developers prefer creating domain-specific languages for solving specific application domain problems. Building your own programming language has its advantages. It can be your antidote to the ever-increasing size and complexity of software. In this book, you'll start with implementing the frontend of a compiler for your language, including a lexical analyzer and parser. The book covers a series of traversals of syntax trees, culminating with code generation for a bytecode virtual machine. Moving ahead, you'll learn how domain-specific language features are often best represented by operators and functions that are built into the language, rather than library functions. We'll conclude with how to implement garbage collection, including reference counting and mark-and-sweep garbage collection. Throughout the book, Dr. Jeffery weaves in his experience of building the Unicon programming language to give better context to the concepts where relevant examples are provided in both Unicon and Java so that you can follow the code of your choice of either a very high-level language with advanced features, or a mainstream language. By the end of this book, you'll be able to build and deploy your own domain-specific languages, capable of compiling and running programs. What you will learn Perform requirements analysis for the new language and design language syntax and semantics Write lexical and context-free grammar rules for common expressions and control structures Develop a scanner that reads source code and generate a parser that checks syntax Build key data structures in a compiler and use your compiler to build a syntax-coloring code editor Implement a bytecode interpreter and run bytecode generated by your compiler Write tree traversals that insert information into the syntax tree Implement garbage collection in your language Who this book is for This book is for software developers interested in the idea of inventing their own language or developing a domain-specific language. Computer science students taking compiler construction courses will also find this book highly useful as a practical guide to language implementation to supplement more theoretical textbooks. Intermediate-level knowledge and experience working with a high-level language such as Java or the C++ language are expected to help you get the most out of this book.

A Practical Approach to Compiler Construction

A Practical Approach to Compiler Construction PDF Author: Des Watson
Publisher: Springer
ISBN: 3319527894
Category : Computers
Languages : en
Pages : 263

Book Description
This book provides a practically-oriented introduction to high-level programming language implementation. It demystifies what goes on within a compiler and stimulates the reader's interest in compiler design, an essential aspect of computer science. Programming language analysis and translation techniques are used in many software application areas. A Practical Approach to Compiler Construction covers the fundamental principles of the subject in an accessible way. It presents the necessary background theory and shows how it can be applied to implement complete compilers. A step-by-step approach, based on a standard compiler structure is adopted, presenting up-to-date techniques and examples. Strategies and designs are described in detail to guide the reader in implementing a translator for a programming language. A simple high-level language, loosely based on C, is used to illustrate aspects of the compilation process. Code examples in C are included, together with discussion and illustration of how this code can be extended to cover the compilation of more complex languages. Examples are also given of the use of the flex and bison compiler construction tools. Lexical and syntax analysis is covered in detail together with a comprehensive coverage of semantic analysis, intermediate representations, optimisation and code generation. Introductory material on parallelisation is also included. Designed for personal study as well as for use in introductory undergraduate and postgraduate courses in compiler design, the author assumes that readers have a reasonable competence in programming in any high-level language.

Introduction to the Theory of Programming Languages

Introduction to the Theory of Programming Languages PDF Author: Gilles Dowek
Publisher: Springer Science & Business Media
ISBN: 0857290762
Category : Computers
Languages : en
Pages : 102

Book Description
The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.