Author: Chris Hankin
Publisher: College Publications
ISBN: 9780954300654
Category : Computers
Languages : en
Pages : 164
Book Description
The lambda-calculus lies at the very foundations of computer science. Besides its historical role in computability theory it has had significant influence on programming language design and implementation, denotational semantics, and domain theory. The book emphasises the proof theory for the type-free lambda-calculus. The first six chapters concern this calculus and cover the basic theory, reduction, models, computability, and the relationship between the lambda-calculus and combinatory logic. Chapter 7 presents a variety of typed calculi; first the simply typed lambda-calculus, then Milner-style polymorphism and, finally, the polymorphic lambda-calculus. Chapter 8 concerns two variants of the type-free lambda-calculus that have appeared in the research literature: the lazy lambda-calculus, and the lambda sigma-calculus. The final chapter contains references and a guide to further reading. There are exercises throughout. In contrast to earlier books on these topics, which were written by logicians, this book is written from a computer science perspective and emphasises the practical relevance of many of the key theoretical ideas. The book is intended as a course text for final year undergraduates or first year graduate students in computer science. Research students should find it a useful introduction to more specialist literature.
Lambda Calculi
Author: Chris Hankin
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 184
Book Description
This is a textbook for final year undergraduates/first year graduates in computer science, as well as a useful introduction for research students seeking a solid introduction to more specialist literature. This text emphasises the role of calculus in programming language design and implementation, denotational semantics, and domain theory. Alternative books on the subject have been written by logicians, but this is the first to have been written from a computer science prespective, invaluable in emphasising the practical relevance of the key theortical ideas.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 184
Book Description
This is a textbook for final year undergraduates/first year graduates in computer science, as well as a useful introduction for research students seeking a solid introduction to more specialist literature. This text emphasises the role of calculus in programming language design and implementation, denotational semantics, and domain theory. Alternative books on the subject have been written by logicians, but this is the first to have been written from a computer science prespective, invaluable in emphasising the practical relevance of the key theortical ideas.
An Introduction to Functional Programming Through Lambda Calculus
Author: Greg Michaelson
Publisher: Courier Corporation
ISBN: 0486280292
Category : Mathematics
Languages : en
Pages : 338
Book Description
Well-respected text for computer science students provides an accessible introduction to functional programming. Cogent examples illuminate the central ideas, and numerous exercises offer reinforcement. Includes solutions. 1989 edition.
Publisher: Courier Corporation
ISBN: 0486280292
Category : Mathematics
Languages : en
Pages : 338
Book Description
Well-respected text for computer science students provides an accessible introduction to functional programming. Cogent examples illuminate the central ideas, and numerous exercises offer reinforcement. Includes solutions. 1989 edition.
Lambda Calculus with Types
Author: Henk Barendregt
Publisher: Cambridge University Press
ISBN: 1107276349
Category : Mathematics
Languages : en
Pages : 969
Book Description
This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.
Publisher: Cambridge University Press
ISBN: 1107276349
Category : Mathematics
Languages : en
Pages : 969
Book Description
This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.
Basic Category Theory for Computer Scientists
Author: Benjamin C. Pierce
Publisher: MIT Press
ISBN: 0262326450
Category : Computers
Languages : en
Pages : 117
Book Description
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Publisher: MIT Press
ISBN: 0262326450
Category : Computers
Languages : en
Pages : 117
Book Description
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
The Formal Semantics of Programming Languages
Author: Glynn Winskel
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Introduction to Combinators and (lambda) Calculus
Author: J. R. Hindley
Publisher: CUP Archive
ISBN: 9780521318396
Category : Mathematics
Languages : en
Pages : 376
Book Description
Combinatory logic and lambda-conversion were originally devised in the 1920s for investigating the foundations of mathematics using the basic concept of 'operation' instead of 'set'. They have now developed into linguistic tools, useful in several branches of logic and computer science, especially in the study of programming languages. These notes form a simple introduction to the two topics, suitable for a reader who has no previous knowledge of combinatory logic, but has taken an undergraduate course in predicate calculus and recursive functions. The key ideas and basic results are presented, as well as a number of more specialised topics, and man), exercises are included to provide manipulative practice.
Publisher: CUP Archive
ISBN: 9780521318396
Category : Mathematics
Languages : en
Pages : 376
Book Description
Combinatory logic and lambda-conversion were originally devised in the 1920s for investigating the foundations of mathematics using the basic concept of 'operation' instead of 'set'. They have now developed into linguistic tools, useful in several branches of logic and computer science, especially in the study of programming languages. These notes form a simple introduction to the two topics, suitable for a reader who has no previous knowledge of combinatory logic, but has taken an undergraduate course in predicate calculus and recursive functions. The key ideas and basic results are presented, as well as a number of more specialised topics, and man), exercises are included to provide manipulative practice.