Perceptrons

Perceptrons PDF Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Computers
Languages : en
Pages : 161

Book Description
What Is Perceptrons The perceptron is a technique for supervised learning of binary classifiers that is used in the field of machine learning. A function known as a binary classifier is one that can determine whether or not an input, which is often portrayed by a vector of numbers, is a member of a particular category. It is a kind of linear classifier, which means that it is a classification method that forms its predictions on the basis of a linear predictor function by combining a set of weights with the feature vector. In other words, it creates its predictions based on a linear predictor function. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Perceptron Chapter 2: Supervised learning Chapter 3: Support vector machine Chapter 4: Linear classifier Chapter 5: Pattern recognition Chapter 6: Artificial neuron Chapter 7: Hopfield network Chapter 8: Backpropagation Chapter 9: Feedforward neural network Chapter 10: Multilayer perceptron (II) Answering the public top questions about perceptrons. (III) Real world examples for the usage of perceptrons in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of perceptrons. What Is Artificial Intelligence Series The Artificial Intelligence eBook series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The Artificial Intelligence eBook series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.

Models of Neurons and Perceptrons: Selected Problems and Challenges

Models of Neurons and Perceptrons: Selected Problems and Challenges PDF Author: Andrzej Bielecki
Publisher: Springer
ISBN: 3319901400
Category : Technology & Engineering
Languages : en
Pages : 150

Book Description
This book describes models of the neuron and multilayer neural structures, with a particular focus on mathematical models. It also discusses electronic circuits used as models of the neuron and the synapse, and analyses the relations between the circuits and mathematical models in detail. The first part describes the biological foundations and provides a comprehensive overview of the artificial neural networks. The second part then presents mathematical foundations, reviewing elementary topics, as well as lesser-known problems such as topological conjugacy of dynamical systems and the shadowing property. The final two parts describe the models of the neuron, and the mathematical analysis of the properties of artificial multilayer neural networks. Combining biological, mathematical and electronic approaches, this multidisciplinary book it useful for the mathematicians interested in artificial neural networks and models of the neuron, for computer scientists interested in formal foundations of artificial neural networks, and for the biologists interested in mathematical and electronic models of neural structures and processes.

Support Vector Machines and Perceptrons

Support Vector Machines and Perceptrons PDF Author: M.N. Murty
Publisher: Springer
ISBN: 3319410636
Category : Computers
Languages : en
Pages : 103

Book Description
This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>

Perceptrons, Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou

Perceptrons, Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou PDF Author: Marvin Minsky
Publisher: MIT Press
ISBN: 0262343940
Category : Computers
Languages : en
Pages : 317

Book Description
The first systematic study of parallelism in computation by two pioneers in the field. Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou In 1969, ten years after the discovery of the perceptron—which showed that a machine could be taught to perform certain tasks using examples—Marvin Minsky and Seymour Papert published Perceptrons, their analysis of the computational capabilities of perceptrons for specific tasks. As Léon Bottou writes in his foreword to this edition, “Their rigorous work and brilliant technique does not make the perceptron look very good.” Perhaps as a result, research turned away from the perceptron. Then the pendulum swung back, and machine learning became the fastest-growing field in computer science. Minsky and Papert's insistence on its theoretical foundations is newly relevant. Perceptrons—the first systematic study of parallelism in computation—marked a historic turn in artificial intelligence, returning to the idea that intelligence might emerge from the activity of networks of neuron-like entities. Minsky and Papert provided mathematical analysis that showed the limitations of a class of computing machines that could be considered as models of the brain. Minsky and Papert added a new chapter in 1987 in which they discuss the state of parallel computers, and note a central theoretical challenge: reaching a deeper understanding of how “objects” or “agents” with individuality can emerge in a network. Progress in this area would link connectionism with what the authors have called “society theories of mind.”

Multilayer Perceptrons

Multilayer Perceptrons PDF Author: Ruth Vang-Mata
Publisher:
ISBN: 9781536173642
Category : Differential equations
Languages : en
Pages : 143

Book Description
"Multilayer Perceptrons: Theory and Applications opens with a review of research on the use of the multilayer perceptron artificial neural network method for solving ordinary/partial differential equations, accompanied by critical comments. A historical perspective on the evolution of the multilayer perceptron neural network is provided. Furthermore, the foundation for automated post-processing that is imperative for consolidating the signal data to a feature set is presented. In one study, panoramic dental x-ray images are used to estimate age and gender. These images were subjected to image pre-processing techniques to achieve better results. In a subsequent study, a multilayer perceptrons artificial neural network with one hidden layer and trained through the efficient resilient backpropagation algorithm is used for modeling quasi-fractal patch antennas. Later, the authors propose a scheme with eight steps for a dynamic time series forecasting using an adaptive multilayer perceptron with minimal complexity. Two different data sets from two different countries were used in the experiments to measure the robustness and accuracy of the models. In closing, a multilayer perceptron artificial neural network with a layer of hidden neurons is trained with the resilient backpropagation algorithm, and the network is used to model a Koch pre-fractal patch antenna"--

The Perceptron

The Perceptron PDF Author: Frank Rosenblatt
Publisher:
ISBN:
Category : Artificial intelligence
Languages : en
Pages : 290

Book Description

Multilayer Perceptron

Multilayer Perceptron PDF Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Computers
Languages : en
Pages : 130

Book Description
What Is Multilayer Perceptron A fully connected class of feedforward artificial neural network (ANN), a multilayer perceptron, or MLP, is referred to as a multilayer perceptron. The word "MLP" is used in a way that is rather vague. Sometimes it is used to refer to any feedforward ANN, and other times it is used more specifically to refer to networks that are constructed of several layers of perceptrons; for more information, see "Terminology." When they just contain one hidden layer, multilayer perceptrons are sometimes jokingly referred to as "vanilla" neural networks. This is especially true when the term is used in a slang context. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Multilayer Perceptron Chapter 2: Artificial Neural Network Chapter 3: Perceptron Chapter 4: Artificial Neuron Chapter 5: Activation Function Chapter 6: Backpropagation Chapter 7: Delta Rule Chapter 8: Feedforward Neural Network Chapter 9: Universal Approximation Theorem Chapter 10: Mathematics of Artificial Neural Networks (II) Answering the public top questions about multilayer perceptron. (III) Real world examples for the usage of multilayer perceptron in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of multilayer perceptron. What Is Artificial Intelligence Series The Artificial Intelligence eBook series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The Artificial Intelligence eBook series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.

Principles of Neurodynamics

Principles of Neurodynamics PDF Author: Frank Rosenblatt
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 648

Book Description
Part I attempts to review the background, basic sources of data, concepts, and methodology to be employed in the study of perceptrons. In Chapter 2, a brief review of the main alternative approaches to the development of brain models is presented. Chapter 3 considers the physiological and psychological criteria for a suitable model, and attempts to evaluate the empirical evidence which is available on several important issues. Chapter 4 contains basic definitions and some of the notation to be used in later sections are presented. Parts II and III are devoted to a summary of the established theoretical results obtained to date. Part II (Chapters 5 through 14) deals with the theory of three-layer series-coupled perceptrons, on which most work has been done to date. Part III (Chapters 15 through 20) deals with the theory of multi-layer and cross-coupled perceptrons. Part IV is concerned with more speculative models and problems for future analysis. Of necessity, the final chapters become increasingly heuristic in character, as the theory of perceptrons is not yet complete, and new possibilities are continually coming to light. (Author).

Second-Order Methods for Neural Networks

Second-Order Methods for Neural Networks PDF Author: Adrian J. Shepherd
Publisher: Springer Science & Business Media
ISBN: 1447109538
Category : Computers
Languages : en
Pages : 156

Book Description
About This Book This book is about training methods - in particular, fast second-order training methods - for multi-layer perceptrons (MLPs). MLPs (also known as feed-forward neural networks) are the most widely-used class of neural network. Over the past decade MLPs have achieved increasing popularity among scientists, engineers and other professionals as tools for tackling a wide variety of information processing tasks. In common with all neural networks, MLPsare trained (rather than programmed) to carryout the chosen information processing function. Unfortunately, the (traditional' method for trainingMLPs- the well-knownbackpropagation method - is notoriously slow and unreliable when applied to many prac tical tasks. The development of fast and reliable training algorithms for MLPsis one of the most important areas ofresearch within the entire field of neural computing. The main purpose of this book is to bring to a wider audience a range of alternative methods for training MLPs, methods which have proved orders of magnitude faster than backpropagation when applied to many training tasks. The book also addresses the well-known (local minima' problem, and explains ways in which fast training methods can be com bined with strategies for avoiding (or escaping from) local minima. All the methods described in this book have a strong theoretical foundation, drawing on such diverse mathematical fields as classical optimisation theory, homotopic theory and stochastic approximation theory.

AI Game Development

AI Game Development PDF Author: Alex J. Champandard
Publisher: New Riders
ISBN: 9781592730049
Category : Computers
Languages : en
Pages : 772

Book Description
With game players expecting greater intelligence, efficiency, and realism with non-player characters, AI plays an ever-increasing important role in game development. This is a tremendous challenge for game developers in methodology, software design, and programming. Creating autonomous synthetic creatures that can adapt in games requires a different kind of understanding of AI than the classical approach used by current game programmers. The Nouvelle Game AI approach presented in this book focuses on creating embodied "animats" that behave in an intelligent and realistic manner. In particular, learning AI is generating much interest among the game development community, as these modern techniques can be used to optimize the development process. Book jacket.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.