Hands-On Machine Learning with C++

Hands-On Machine Learning with C++ PDF Author: Kirill Kolodiazhnyi
Publisher: Packt Publishing Ltd
ISBN: 1789952476
Category : Computers
Languages : en
Pages : 515

Book Description
Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key FeaturesBecome familiar with data processing, performance measuring, and model selection using various C++ librariesImplement practical machine learning and deep learning techniques to build smart modelsDeploy machine learning models to work on mobile and embedded devicesBook Description C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learnExplore how to load and preprocess various data types to suitable C++ data structuresEmploy key machine learning algorithms with various C++ librariesUnderstand the grid-search approach to find the best parameters for a machine learning modelImplement an algorithm for filtering anomalies in user data using Gaussian distributionImprove collaborative filtering to deal with dynamic user preferencesUse C++ libraries and APIs to manage model structures and parametersImplement a C++ program to solve image classification tasks with LeNet architectureWho this book is for You will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

Hands-On Machine Learning with R

Hands-On Machine Learning with R PDF Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373

Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 851

Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Machine Learning for Kids

Machine Learning for Kids PDF Author: Dale Lane
Publisher: No Starch Press
ISBN: 1718500572
Category : Computers
Languages : en
Pages : 290

Book Description
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+

C++ Machine Learning

C++ Machine Learning PDF Author: Phil Culliton
Publisher:
ISBN: 9781786468406
Category :
Languages : en
Pages : 569

Book Description
Get introduced to the concepts of Machine Learning and build efficient data models in C++About This Book* Get introduced to the concepts of Machine Learning and see how you can implement them in C++, and build efficient data models for training data using popular libraries such as mlpack and Shark* A detailed guide packed with real-life examples to help you build a solid understanding of Machine Learning.Who This Book Is ForThe target audience is C++ developers who want to get into machine learning, or knowledgeable ML programmers who don't know C++ well but want to use it, and libraries written in it, in their work. The reader should be conversant with at least one programming language, and have some familiarity with strongly-typed languages and vectors/matrices.What you will learn* Model relationships in your data using supervised learning* Uncover insights using clustering and t-SNE* Use ensemble and stack to create more powerful models* Use cuda-convnet and deep learning to solve image recognition problems* Build an end-to-end pipeline that turns what you learn into practical, ready-to-use software* Solve big data problems using Hadoop and Google's MR4CIn DetailMachine Learning tasks are CPU time-consuming. C++ outperforms any other programming language by allowing access to programming constructs to optimize CPU-based number crunching, precision, and memory management normally abstracted away in higher-level languages.This book aims to address the challenges associated with C++ machine learning by introducing you to several useful libraries (mlpack, Shogun, and so on); you'll producing a library of your own code along the way that should make common tasks more straightforward.We begin with a review of the basic concepts you will need to know or brush up on before going further, including math and an intro to the C++ style we'll be using throughout the book. We then deal with the fundamentals of ML-how to handle input, the basic algorithms, and sample cases where the basic algorithms succeed or fail. This is followed by more advanced topics such as complex algorithms, regularization, optimization, and visualizing and understanding data, referring back to earlier work consistently so that you can see the mountains move. We'll then touch upon topics of current interest: computer vision (including sections on CUDA and "deep" learning), natural language processing, and handling very large datasets.The journey ends with a coda: we go back through the original sample cases, applying what we've learned along the way to rectify the issues we ran into initially.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Hands-On Neural Network Programming with C#

Hands-On Neural Network Programming with C# PDF Author: Matt R. Cole
Publisher: Packt Publishing Ltd
ISBN: 1789619866
Category : Computers
Languages : en
Pages : 320

Book Description
Create and unleash the power of neural networks by implementing C# and .Net code Key FeaturesGet a strong foundation of neural networks with access to various machine learning and deep learning librariesReal-world case studies illustrating various neural network techniques and architectures used by practitionersCutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many moreBook Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learnUnderstand perceptrons and how to implement them in C#Learn how to train and visualize a neural network using cognitive servicesPerform image recognition for detecting and labeling objects using C# and TensorFlowSharpDetect specific image characteristics such as a face using Accord.NetDemonstrate particle swarm optimization using a simple XOR problem and EncogTrain convolutional neural networks using ConvNetSharpFind optimal parameters for your neural network functions using numeric and heuristic optimization techniques.Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Hands-On Machine Learning with ML.NET

Hands-On Machine Learning with ML.NET PDF Author: Jarred Capellman
Publisher: Packt Publishing Ltd
ISBN: 1789804299
Category : Computers
Languages : en
Pages : 287

Book Description
Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core Key FeaturesGet well-versed with the ML.NET framework and its components and APIs using practical examplesLearn how to build, train, and evaluate popular machine learning algorithms with ML.NET offeringsExtend your existing machine learning models by integrating with TensorFlow and other librariesBook Description Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code. The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR. By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET. What you will learnUnderstand the framework, components, and APIs of ML.NET using C#Develop regression models using ML.NET for employee attrition and file classificationEvaluate classification models for sentiment prediction of restaurant reviewsWork with clustering models for file type classificationsUse anomaly detection to find anomalies in both network traffic and login historyWork with ASP.NET Core Blazor to create an ML.NET enabled web applicationIntegrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detectionWho this book is for If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.