Human-Centered Data Science

Human-Centered Data Science PDF Author: Cecilia Aragon
Publisher: MIT Press
ISBN: 0262367599
Category : Computers
Languages : en
Pages : 201

Book Description
Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.

Data-Driven Personas

Data-Driven Personas PDF Author: Bernard J. Jansen
Publisher: Springer Nature
ISBN: 3031022319
Category : Computers
Languages : en
Pages : 317

Book Description
Data-driven personas are a significant advancement in the fields of human-centered informatics and human-computer interaction. Data-driven personas enhance user understanding by combining the empathy inherent with personas with the rationality inherent in analytics using computational methods. Via the employment of these computational methods, the data-driven persona method permits the use of large-scale user data, which is a novel advancement in persona creation. A common approach for increasing stakeholder engagement about audiences, customers, or users, persona creation remained relatively unchanged for several decades. However, the availability of digital user data, data science algorithms, and easy access to analytics platforms provide avenues and opportunities to enhance personas from often sketchy representations of user segments to precise, actionable, interactive decision-making tools—data-driven personas! Using the data-driven approach, the persona profile can serve as an interface to a fully functional analytics system that can present user representation at various levels of information granularity for more task-aligned user insights. We trace the techniques that have enabled the development of data-driven personas and then conceptually frame how one can leverage data-driven personas as tools for both empathizing with and understanding of users. Presenting a conceptual framework consisting of (a) persona benefits, (b) analytics benefits, and (c) decision-making outcomes, we illustrate applying this framework via practical use cases in areas of system design, digital marketing, and content creation to demonstrate the application of data-driven personas in practical applied situations. We then present an overview of a fully functional data-driven persona system as an example of multi-level information aggregation needed for decision making about users. We demonstrate that data-driven personas systems can provide critical, empathetic, and user understanding functionalities for anyone needing such insights.

Human-Centered Data Science

Human-Centered Data Science PDF Author: Cecilia Aragon
Publisher: MIT Press
ISBN: 0262543214
Category : Computers
Languages : en
Pages : 201

Book Description
Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.

Human-in-the-Loop Machine Learning

Human-in-the-Loop Machine Learning PDF Author: Robert Munro
Publisher: Simon and Schuster
ISBN: 1617296740
Category : Computers
Languages : en
Pages : 422

Book Description
Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

Human-Centered AI

Human-Centered AI PDF Author: Ben Shneiderman
Publisher: Oxford University Press
ISBN: 0192845292
Category : Computers
Languages : en
Pages : 390

Book Description
The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.

Flying Free

Flying Free PDF Author: Cecilia Aragon
Publisher: Blackstone Publishing
ISBN: 1982642483
Category : Biography & Autobiography
Languages : en
Pages : 272

Book Description
The daughter of a Chilean father and a Filipina mother, Cecilia Rodriguez Aragon grew up as a shy, timid child in a small midwestern town during the 1960s. Targeted by school bullies and dismissed by many of her teachers, she worried that people would find out the truth: that she was INTF. Incompetent. Nerd. Terrified. Failure. This feeling stayed with her well into her twenties when she was told that “girls can’t do science” or “women just don’t know how to handle machines.” Yet in the span of just six years, Cecilia became the first Latina pilot to secure a place on the United States Unlimited Aerobatic Team and earn the right to represent her country at the Olympics of aviation, the World Aerobatic Championships. How did she do it? Using mathematical techniques to overcome her fear, Cecilia performed at air shows in front of millions of people. She jumped out of airplanes and taught others how to fly. She learned how to fund-raise and earn money to compete at the world level. She worked as a test pilot and contributed to the design of experimental airplanes, crafting curves of metal and fabric that shaped air to lift inanimate objects high above the earth. And best of all, she surprised everyone by overcoming the prejudices people held about her because of her race and her gender. Flying Free is the story of how Cecilia Aragon broke free from expectations and rose above her own limits by combining her passion for flying with math and logic in unexpected ways. You don’t have to be a math whiz or a science geek to learn from her story. You just have to want to soar.

Social Sensing

Social Sensing PDF Author: Dong Wang
Publisher: Morgan Kaufmann
ISBN: 0128011319
Category : Computers
Languages : en
Pages : 232

Book Description
Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book

Data Feminism

Data Feminism PDF Author: Catherine D'Ignazio
Publisher: MIT Press
ISBN: 0262358530
Category : Social Science
Languages : en
Pages : 328

Book Description
A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Data Science

Data Science PDF Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262535432
Category : Computers
Languages : en
Pages : 282

Book Description
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Foundations of Data Science

Foundations of Data Science PDF Author: Avrim Blum
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433

Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.