Author: Jeffrey Hoffstein
Publisher: Springer
ISBN: 1493917110
Category : Mathematics
Languages : en
Pages : 549
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
An Introduction to Mathematical Cryptography
Author: Jeffrey Hoffstein
Publisher: Springer Science & Business Media
ISBN: 0387779949
Category : Mathematics
Languages : en
Pages : 533
Book Description
An Introduction to Mathematical Cryptography provides an introduction to public key cryptography and underlying mathematics that is required for the subject. Each of the eight chapters expands on a specific area of mathematical cryptography and provides an extensive list of exercises. It is a suitable text for advanced students in pure and applied mathematics and computer science, or the book may be used as a self-study. This book also provides a self-contained treatment of mathematical cryptography for the reader with limited mathematical background.
Publisher: Springer Science & Business Media
ISBN: 0387779949
Category : Mathematics
Languages : en
Pages : 533
Book Description
An Introduction to Mathematical Cryptography provides an introduction to public key cryptography and underlying mathematics that is required for the subject. Each of the eight chapters expands on a specific area of mathematical cryptography and provides an extensive list of exercises. It is a suitable text for advanced students in pure and applied mathematics and computer science, or the book may be used as a self-study. This book also provides a self-contained treatment of mathematical cryptography for the reader with limited mathematical background.
An Introduction to Mathematical Cryptography
Author: Jeffrey Hoffstein
Publisher: Springer
ISBN: 9781493939381
Category : Mathematics
Languages : en
Pages : 0
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
Publisher: Springer
ISBN: 9781493939381
Category : Mathematics
Languages : en
Pages : 0
Book Description
This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.
The Mathematics of Encryption
Author: Margaret Cozzens
Publisher: American Mathematical Soc.
ISBN: 0821883216
Category : Business & Economics
Languages : en
Pages : 355
Book Description
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
Publisher: American Mathematical Soc.
ISBN: 0821883216
Category : Business & Economics
Languages : en
Pages : 355
Book Description
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.
Introduction to Cryptography with Mathematical Foundations and Computer Implementations
Author: Alexander Stanoyevitch
Publisher: CRC Press
ISBN: 1439817634
Category : Computers
Languages : en
Pages : 646
Book Description
From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.
Publisher: CRC Press
ISBN: 1439817634
Category : Computers
Languages : en
Pages : 646
Book Description
From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.
A Course in Number Theory and Cryptography
Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245
Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.
Introduction to Cryptography
Author: Johannes Buchmann
Publisher: Springer Science & Business Media
ISBN: 1441990038
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH
Publisher: Springer Science & Business Media
ISBN: 1441990038
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book explains the basic methods of modern cryptography. It is written for readers with only basic mathematical knowledge who are interested in modern cryptographic algorithms and their mathematical foundation. Several exercises are included following each chapter. From the reviews: "Gives a clear and systematic introduction into the subject whose popularity is ever increasing, and can be recommended to all who would like to learn about cryptography." --ZENTRALBLATT MATH
Introduction to Cryptography
Author: Hans Delfs
Publisher: Springer Science & Business Media
ISBN: 3540492445
Category : Computers
Languages : en
Pages : 372
Book Description
Due to the rapid growth of digital communication and electronic data exchange, information security has become a crucial issue in industry, business, and administration. Modern cryptography provides essential techniques for securing information and protecting data. In the first part, this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. The second edition contains corrections, revisions and new material, including a complete description of the AES, an extended section on cryptographic hash functions, a new section on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.
Publisher: Springer Science & Business Media
ISBN: 3540492445
Category : Computers
Languages : en
Pages : 372
Book Description
Due to the rapid growth of digital communication and electronic data exchange, information security has become a crucial issue in industry, business, and administration. Modern cryptography provides essential techniques for securing information and protecting data. In the first part, this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. The second edition contains corrections, revisions and new material, including a complete description of the AES, an extended section on cryptographic hash functions, a new section on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.
Serious Cryptography
Author: Jean-Philippe Aumasson
Publisher: No Starch Press
ISBN: 1593278268
Category : Computers
Languages : en
Pages : 313
Book Description
This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
Publisher: No Starch Press
ISBN: 1593278268
Category : Computers
Languages : en
Pages : 313
Book Description
This practical guide to modern encryption breaks down the fundamental mathematical concepts at the heart of cryptography without shying away from meaty discussions of how they work. You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography. You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questions Each chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.