Author: Steven Weinberg
Publisher: Cambridge University Press
ISBN: 9780521550017
Category : Science
Languages : en
Pages : 656
Book Description
Available for the first time in paperback, The Quantum Theory of Fields is a self-contained, comprehensive, and up-to-date introduction to quantum field theory from Nobel Laureate Steven Weinberg. Volume I introduces the foundations of quantum field theory.
Quantum Field Theory II
Author: Edouard B. Manoukian
Publisher: Springer
ISBN: 3319338528
Category : Science
Languages : en
Pages : 374
Book Description
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell’s Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.
Publisher: Springer
ISBN: 3319338528
Category : Science
Languages : en
Pages : 374
Book Description
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell’s Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.
An Introduction To Quantum Field Theory
Author: Michael E. Peskin
Publisher: CRC Press
ISBN: 0429983182
Category : Science
Languages : en
Pages : 866
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Publisher: CRC Press
ISBN: 0429983182
Category : Science
Languages : en
Pages : 866
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Supersymmetry in Particle Physics
Author: Ian Aitchison
Publisher: Cambridge University Press
ISBN: 1139467050
Category : Science
Languages : en
Pages : 214
Book Description
Supersymmetry represents the culmination of the search for fundamental symmetries that has dominated particle physics for 50 years. Traditionally, the constituents of matter (fermions) were regarded as different from the particles (bosons) transmitting the forces between them. In supersymmetry, fermions and bosons are unified. Intended for graduate students in particle physics, and researchers in experimental and phenomenological supersymmetry, this textbook, first published in 2007, provides a simple introduction to a previously formidably technical field. Its elementary, practical treatment brings readers to the frontier of contemporary research, in particular the experiments at the Large Hadron Collider. Theories are constructed through an intuitive 'trial and error' approach. Basic elements of spinor formalism and superfields are introduced, allowing readers to access more advanced treatments. Emphasis is placed on physical understanding, and on detailed derivations of important steps. Many short exercises are included, making for a valuable and accessible self-study tool.
Publisher: Cambridge University Press
ISBN: 1139467050
Category : Science
Languages : en
Pages : 214
Book Description
Supersymmetry represents the culmination of the search for fundamental symmetries that has dominated particle physics for 50 years. Traditionally, the constituents of matter (fermions) were regarded as different from the particles (bosons) transmitting the forces between them. In supersymmetry, fermions and bosons are unified. Intended for graduate students in particle physics, and researchers in experimental and phenomenological supersymmetry, this textbook, first published in 2007, provides a simple introduction to a previously formidably technical field. Its elementary, practical treatment brings readers to the frontier of contemporary research, in particular the experiments at the Large Hadron Collider. Theories are constructed through an intuitive 'trial and error' approach. Basic elements of spinor formalism and superfields are introduced, allowing readers to access more advanced treatments. Emphasis is placed on physical understanding, and on detailed derivations of important steps. Many short exercises are included, making for a valuable and accessible self-study tool.
Quantum Fields and Strings: A Course for Mathematicians
Author: Pierre Deligne
Publisher: American Mathematical Society
ISBN: 0821820133
Category : Mathematics
Languages : en
Pages : 801
Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Publisher: American Mathematical Society
ISBN: 0821820133
Category : Mathematics
Languages : en
Pages : 801
Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Quantum Field Theory
Author: Mark Srednicki
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Publisher: Cambridge University Press
ISBN: 1139462768
Category : Science
Languages : en
Pages : 664
Book Description
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Quantum Field Theory
Author: François Gelis
Publisher: Cambridge University Press
ISBN: 1108574386
Category : Science
Languages : en
Pages : 611
Book Description
This modern text combines fundamental principles with advanced topics and recent techniques in a rigorous and self-contained treatment of quantum field theory.Beginning with a review of basic principles, starting with quantum mechanics and special relativity, students can refresh their knowledge of elementary aspects of quantum field theory and perturbative calculations in the Standard Model. Results and tools relevant to many applications are covered, including canonical quantization, path integrals, non-Abelian gauge theories, and the renormalization group. Advanced topics are explored, with detail given on effective field theories, quantum anomalies, stable extended field configurations, lattice field theory, and field theory at a finite temperature or in the strong field regime. Two chapters are dedicated to new methods for calculating scattering amplitudes (spinor-helicity, on-shell recursion, and generalized unitarity), equipping students with practical skills for research. Accessibly written, with numerous worked examples and end-of-chapter problems, this is an essential text for graduate students. The breadth of coverage makes it an equally excellent reference for researchers.
Publisher: Cambridge University Press
ISBN: 1108574386
Category : Science
Languages : en
Pages : 611
Book Description
This modern text combines fundamental principles with advanced topics and recent techniques in a rigorous and self-contained treatment of quantum field theory.Beginning with a review of basic principles, starting with quantum mechanics and special relativity, students can refresh their knowledge of elementary aspects of quantum field theory and perturbative calculations in the Standard Model. Results and tools relevant to many applications are covered, including canonical quantization, path integrals, non-Abelian gauge theories, and the renormalization group. Advanced topics are explored, with detail given on effective field theories, quantum anomalies, stable extended field configurations, lattice field theory, and field theory at a finite temperature or in the strong field regime. Two chapters are dedicated to new methods for calculating scattering amplitudes (spinor-helicity, on-shell recursion, and generalized unitarity), equipping students with practical skills for research. Accessibly written, with numerous worked examples and end-of-chapter problems, this is an essential text for graduate students. The breadth of coverage makes it an equally excellent reference for researchers.
The Quantum Theory of Fields: Volume 1, Foundations
Author: Steven Weinberg
Publisher: Cambridge University Press
ISBN: 113964324X
Category : Science
Languages : en
Pages : 628
Book Description
Available for the first time in paperback, The Quantum Theory of Fields is a self-contained, comprehensive, and up-to-date introduction to quantum field theory from Nobel Laureate Steven Weinberg. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before. After a brief historical outline, the book begins with the principles of relativity and quantum mechanics, and the properties of particles that follow. Quantum field theory emerges from this as a natural consequence. The classic calculations of quantum electrodynamics are presented in a thoroughly modern way, showing the use of path integrals and dimensional regularization. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Exercises are included at the end of each chapter.
Publisher: Cambridge University Press
ISBN: 113964324X
Category : Science
Languages : en
Pages : 628
Book Description
Available for the first time in paperback, The Quantum Theory of Fields is a self-contained, comprehensive, and up-to-date introduction to quantum field theory from Nobel Laureate Steven Weinberg. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before. After a brief historical outline, the book begins with the principles of relativity and quantum mechanics, and the properties of particles that follow. Quantum field theory emerges from this as a natural consequence. The classic calculations of quantum electrodynamics are presented in a thoroughly modern way, showing the use of path integrals and dimensional regularization. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Exercises are included at the end of each chapter.
The Quantum Theory of Fields: Volume 3, Supersymmetry
Author: Steven Weinberg
Publisher: Cambridge University Press
ISBN: 1139643436
Category : Science
Languages : en
Pages : 514
Book Description
In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.
Publisher: Cambridge University Press
ISBN: 1139643436
Category : Science
Languages : en
Pages : 514
Book Description
In this third volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly exposition of quantum field theory. This volume presents a self-contained, up-to-date and comprehensive introduction to supersymmetry, a highly active area of theoretical physics. The text introduces and explains a broad range of topics, including supersymmetric algebras, supersymmetric field theories, extended supersymmetry, supergraphs, non-perturbative results, theories of supersymmetry in higher dimensions, and supergravity. A thorough review is given of the phenomenological implications of supersymmetry, including theories of both gauge and gravitationally-mediated supersymmetry breaking. Also provided is an introduction to mathematical techniques, based on holomorphy and duality, that have proved so fruitful in recent developments. This book contains much material not found in other books on supersymmetry, including previously unpublished results. Exercises are included.
Supersymmetry and String Theory
Author: Michael Dine
Publisher: Cambridge University Press
ISBN: 113946244X
Category : Science
Languages : en
Pages : 481
Book Description
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.
Publisher: Cambridge University Press
ISBN: 113946244X
Category : Science
Languages : en
Pages : 481
Book Description
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.