The Practitioner's Guide to Graph Data

The Practitioner's Guide to Graph Data PDF Author: Denise Gosnell
Publisher: "O'Reilly Media, Inc."
ISBN: 1492044024
Category : Computers
Languages : en
Pages : 429

Book Description
Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system

The Practitioner's Guide to Graph Data

The Practitioner's Guide to Graph Data PDF Author: Denise Gosnell
Publisher:
ISBN: 9781492044062
Category : Database management
Languages : en
Pages : 0

Book Description
With Early Release ebooks, you get books in their earliest form-the authors' raw and unedited content as they write-so you can take advantage of these technologies long before the official release of these titles. This book will enable you to apply graph thinking to solve complex problems. If you want to learn how to build architectures for extracting value for your domain's complex problems, then this book is for you. You'll learn how to think about your data as a graph, and how to determine if graph technology is right for your application. The book describes techniques for scalable, real-time, and multimodel architectures that solve complex problems, and shows how companies are successfully applying graph thinking in distributed production environments. Authors Denise Koessler Gosnell and Matthias Broecheler also introduce the Graph Schema Language, a set of terminology and visual illustrations to normalize how graph practitioners communicate conceptual graph models, graph schema, and graph database design.

The Practitioner's Guide to Graph Data

The Practitioner's Guide to Graph Data PDF Author: Denise Gosnell
Publisher: O'Reilly Media
ISBN: 9781492044079
Category :
Languages : en
Pages : 250

Book Description
How do you apply graph thinking to solve complex problems? With this practical guide, data scientists will learn how to think about data as a graph and determine if graph technology is right for your company. You'll learn techniques for building scalable, real-time, and multimodel architectures that solve complex problems with graph data. Authors Denise Koessler Gosnell and Matthias Broecheler show you how companies today are successfully applying graph thinking in distributed production environments. You'll also learn the Graph Schema Language, a set of terminology and visual illustrations to normalize how graph practitioners communicate conceptual graph models, graph schema, and graph database design.

Graph Databases

Graph Databases PDF Author: Ian Robinson
Publisher: "O'Reilly Media, Inc."
ISBN: 1491930861
Category : Computers
Languages : en
Pages : 238

Book Description
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. This second edition includes new code samples and diagrams, using the latest Neo4j syntax, as well as information on new functionality. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information

Data Matching

Data Matching PDF Author: Peter Christen
Publisher: Springer Science & Business Media
ISBN: 3642311644
Category : Computers
Languages : en
Pages : 279

Book Description
Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.

Practical Graph Mining with R

Practical Graph Mining with R PDF Author: Nagiza F. Samatova
Publisher: CRC Press
ISBN: 1439860858
Category : Business & Economics
Languages : en
Pages : 495

Book Description
Discover Novel and Insightful Knowledge from Data Represented as a GraphPractical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or cluste

Big Data Analytics with Spark

Big Data Analytics with Spark PDF Author: Mohammed Guller
Publisher: Apress
ISBN: 1484209648
Category : Computers
Languages : en
Pages : 290

Book Description
Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Mining Graph Data

Mining Graph Data PDF Author: Diane J. Cook
Publisher: John Wiley & Sons
ISBN: 0470073039
Category : Technology & Engineering
Languages : en
Pages : 501

Book Description
This text takes a focused and comprehensive look at mining data represented as a graph, with the latest findings and applications in both theory and practice provided. Even if you have minimal background in analyzing graph data, with this book you’ll be able to represent data as graphs, extract patterns and concepts from the data, and apply the methodologies presented in the text to real datasets. There is a misprint with the link to the accompanying Web page for this book. For those readers who would like to experiment with the techniques found in this book or test their own ideas on graph data, the Web page for the book should be http://www.eecs.wsu.edu/MGD.

Quantitative Value, + Web Site

Quantitative Value, + Web Site PDF Author: Wesley R. Gray
Publisher: John Wiley & Sons
ISBN: 1118328078
Category : Business & Economics
Languages : en
Pages : 293

Book Description
A must-read book on the quantitative value investment strategy Warren Buffett and Ed Thorp represent two spectrums of investing: one value driven, one quantitative. Where they align is in their belief that the market is beatable. This book seeks to take the best aspects of value investing and quantitative investing as disciplines and apply them to a completely unique approach to stock selection. Such an approach has several advantages over pure value or pure quantitative investing. This new investing strategy framed by the book is known as quantitative value, a superior, market-beating method to investing in stocks. Quantitative Value provides practical insights into an investment strategy that links the fundamental value investing philosophy of Warren Buffett with the quantitative value approach of Ed Thorp. It skillfully combines the best of Buffett and Ed Thorp—weaving their investment philosophies into a winning, market-beating investment strategy. First book to outline quantitative value strategies as they are practiced by actual market practitioners of the discipline Melds the probabilities and statistics used by quants such as Ed Thorp with the fundamental approaches to value investing as practiced by Warren Buffett and other leading value investors A companion Website contains supplementary material that allows you to learn in a hands-on fashion long after closing the book If you're looking to make the most of your time in today's markets, look no further than Quantitative Value.

A Guide to Graph Colouring

A Guide to Graph Colouring PDF Author: R.M.R. Lewis
Publisher: Springer
ISBN: 3319257307
Category : Computers
Languages : en
Pages : 256

Book Description
This book treats graph colouring as an algorithmic problem, with a strong emphasis on practical applications. The author describes and analyses some of the best-known algorithms for colouring arbitrary graphs, focusing on whether these heuristics can provide optimal solutions in some cases; how they perform on graphs where the chromatic number is unknown; and whether they can produce better solutions than other algorithms for certain types of graphs, and why. The introductory chapters explain graph colouring, and bounds and constructive algorithms. The author then shows how advanced, modern techniques can be applied to classic real-world operational research problems such as seating plans, sports scheduling, and university timetabling. He includes many examples, suggestions for further reading, and historical notes, and the book is supplemented by a website with an online suite of downloadable code. The book will be of value to researchers, graduate students, and practitioners in the areas of operations research, theoretical computer science, optimization, and computational intelligence. The reader should have elementary knowledge of sets, matrices, and enumerative combinatorics.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.