Streaming Systems

Streaming Systems PDF Author: Tyler Akidau
Publisher: "O'Reilly Media, Inc."
ISBN: 1491983825
Category : Computers
Languages : en
Pages : 362

Book Description
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra

Grokking Streaming Systems

Grokking Streaming Systems PDF Author: Josh Fischer
Publisher: Simon and Schuster
ISBN: 1638356491
Category : Computers
Languages : en
Pages : 310

Book Description
A friendly, framework-agnostic tutorial that will help you grok how streaming systems work—and how to build your own! In Grokking Streaming Systems you will learn how to: Implement and troubleshoot streaming systems Design streaming systems for complex functionalities Assess parallelization requirements Spot networking bottlenecks and resolve back pressure Group data for high-performance systems Handle delayed events in real-time systems Grokking Streaming Systems is a simple guide to the complex concepts behind streaming systems. This friendly and framework-agnostic tutorial teaches you how to handle real-time events, and even design and build your own streaming job that’s a perfect fit for your needs. Each new idea is carefully explained with diagrams, clear examples, and fun dialogue between perplexed personalities! About the technology Streaming systems minimize the time between receiving and processing event data, so they can deliver responses in real time. For applications in finance, security, and IoT where milliseconds matter, streaming systems are a requirement. And streaming is hot! Skills on platforms like Spark, Heron, and Kafka are in high demand. About the book Grokking Streaming Systems introduces real-time event streaming applications in clear, reader-friendly language. This engaging book illuminates core concepts like data parallelization, event windows, and backpressure without getting bogged down in framework-specific details. As you go, you’ll build your own simple streaming tool from the ground up to make sure all the ideas and techniques stick. The helpful and entertaining illustrations make streaming systems come alive as you tackle relevant examples like real-time credit card fraud detection and monitoring IoT services. What's inside Implement and troubleshoot streaming systems Design streaming systems for complex functionalities Spot networking bottlenecks and resolve backpressure Group data for high-performance systems About the reader No prior experience with streaming systems is assumed. Examples in Java. About the author Josh Fischer and Ning Wang are Apache Committers, and part of the committee for the Apache Heron distributed stream processing engine. Table of Contents PART 1 GETTING STARTED WITH STREAMING 1 Welcome to Grokking Streaming Systems 2 Hello, streaming systems! 3 Parallelization and data grouping 4 Stream graph 5 Delivery semantics 6 Streaming systems review and a glimpse ahead PART 2 STEPPING UP 7 Windowed computations 8 Join operations 9 Backpressure 10 Stateful computation 11 Wrap-up: Advanced concepts in streaming systems

Streaming Data

Streaming Data PDF Author: Andrew Psaltis
Publisher: Simon and Schuster
ISBN: 1638357242
Category : Computers
Languages : en
Pages : 314

Book Description
Summary Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Table of Contents PART 1 - A NEW HOLISTIC APPROACH Introducing streaming data Getting data from clients: data ingestion Transporting the data from collection tier: decoupling the data pipeline Analyzing streaming data Algorithms for data analysis Storing the analyzed or collected data Making the data available Consumer device capabilities and limitations accessing the data PART 2 - TAKING IT REAL WORLD Analyzing Meetup RSVPs in real time

Hands-On Big Data Modeling

Hands-On Big Data Modeling PDF Author: James Lee
Publisher: Packt Publishing Ltd
ISBN: 1788626087
Category : Computers
Languages : en
Pages : 293

Book Description
Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.

Streaming Architecture

Streaming Architecture PDF Author: Ted Dunning
Publisher: "O'Reilly Media, Inc."
ISBN: 149195390X
Category : Computers
Languages : en
Pages : 119

Book Description
More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.

Peer-to-Peer Video Streaming

Peer-to-Peer Video Streaming PDF Author: Eric Setton
Publisher: Springer Science & Business Media
ISBN: 0387741151
Category : Computers
Languages : en
Pages : 157

Book Description
Peer-to-Peer Video Streaming describes novel solutions to enhance video quality, increase robustness to errors, and reduce end-to-end latency in video streaming systems. This book will be of use to both academics and professionals as it presents thorough coverage and solutions for current issues with Video Streaming and Peer-to-Peer architectures. The book provides an overview of today’s state-of-the art video streaming technology. It presents adaptive video coding and streaming techniques for performance enhancement of conventional client-server systems and P2P multicast. The detailed appendix incorporates various additional experiments.

Kafka Streams in Action

Kafka Streams in Action PDF Author: Bill Bejeck
Publisher: Simon and Schuster
ISBN: 1638356025
Category : Computers
Languages : en
Pages : 410

Book Description
Summary Kafka Streams in Action teaches you everything you need to know to implement stream processing on data flowing into your Kafka platform, allowing you to focus on getting more from your data without sacrificing time or effort. Foreword by Neha Narkhede, Cocreator of Apache Kafka Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Not all stream-based applications require a dedicated processing cluster. The lightweight Kafka Streams library provides exactly the power and simplicity you need for message handling in microservices and real-time event processing. With the Kafka Streams API, you filter and transform data streams with just Kafka and your application. About the Book Kafka Streams in Action teaches you to implement stream processing within the Kafka platform. In this easy-to-follow book, you'll explore real-world examples to collect, transform, and aggregate data, work with multiple processors, and handle real-time events. You'll even dive into streaming SQL with KSQL! Practical to the very end, it finishes with testing and operational aspects, such as monitoring and debugging. What's inside Using the KStreams API Filtering, transforming, and splitting data Working with the Processor API Integrating with external systems About the Reader Assumes some experience with distributed systems. No knowledge of Kafka or streaming applications required. About the Author Bill Bejeck is a Kafka Streams contributor and Confluent engineer with over 15 years of software development experience. Table of Contents PART 1 - GETTING STARTED WITH KAFKA STREAMS Welcome to Kafka Streams Kafka quicklyPART 2 - KAFKA STREAMS DEVELOPMENT Developing Kafka Streams Streams and state The KTable API The Processor APIPART 3 - ADMINISTERING KAFKA STREAMS Monitoring and performance Testing a Kafka Streams applicationPART 4 - ADVANCED CONCEPTS WITH KAFKA STREAMS Advanced applications with Kafka StreamsAPPENDIXES Appendix A - Additional configuration information Appendix B - Exactly once semantics

Stream Processing with Apache Flink

Stream Processing with Apache Flink PDF Author: Fabian Hueske
Publisher: O'Reilly Media
ISBN: 1491974265
Category : Computers
Languages : en
Pages : 311

Book Description
Get started with Apache Flink, the open source framework that powers some of the world’s largest stream processing applications. With this practical book, you’ll explore the fundamental concepts of parallel stream processing and discover how this technology differs from traditional batch data processing. Longtime Apache Flink committers Fabian Hueske and Vasia Kalavri show you how to implement scalable streaming applications with Flink’s DataStream API and continuously run and maintain these applications in operational environments. Stream processing is ideal for many use cases, including low-latency ETL, streaming analytics, and real-time dashboards as well as fraud detection, anomaly detection, and alerting. You can process continuous data of any kind, including user interactions, financial transactions, and IoT data, as soon as you generate them. Learn concepts and challenges of distributed stateful stream processing Explore Flink’s system architecture, including its event-time processing mode and fault-tolerance model Understand the fundamentals and building blocks of the DataStream API, including its time-based and statefuloperators Read data from and write data to external systems with exactly-once consistency Deploy and configure Flink clusters Operate continuously running streaming applications

Scalable Continuous Media Streaming Systems

Scalable Continuous Media Streaming Systems PDF Author: Jack Lee
Publisher: John Wiley & Sons
ISBN: 0470857641
Category : Technology & Engineering
Languages : en
Pages : 394

Book Description
Continuous media streaming systems will shape the future of information infrastructure. The challenge is to design systems and networks capable of supporting millions of concurrent users. Key to this is the integration of fault-tolerant mechanisms to prevent individual component failures from disrupting systems operations. These are just some of the hurdles that need to be overcome before large-scale continuous media services such as video-on-demand can be deployed with maximum efficiency. The author places the subject in context, drawing together findings from the past decade of research whilst examining the technology’s present status and its future potential. The approach adopted is comprehensive, covering topics – notably the scalability and fault-tolerance issues - that previously have not been treated in depth. Provides an accessible introduction to the technology, presenting the basic principles for media streaming system design, focusing on the need for the correct and timely delivery of data. Explores the use of parallel server architectures to tackle the two key challenges of scalability and fault-tolerance. Investigates the use of network multicast streaming algorithms to further increase the scalability of very-large-scale media streaming systems. Illustrates all findings using real-world examples and case studies gleaned from cutting-edge worldwide research. Combining theory and practice, this book will appeal to industry specialists working in content distribution in general and continuous media streaming in particular. The introductory materials and basic building blocks complemented by amply illustrated, more advanced coverage provide essential reading for senior undergraduates, postgraduates and researchers in these fields.

Event Streams in Action

Event Streams in Action PDF Author: Valentin Crettaz
Publisher: Simon and Schuster
ISBN: 1638355835
Category : Computers
Languages : en
Pages : 485

Book Description
Summary Event Streams in Action is a foundational book introducing the ULP paradigm and presenting techniques to use it effectively in data-rich environments. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many high-profile applications, like LinkedIn and Netflix, deliver nimble, responsive performance by reacting to user and system events as they occur. In large-scale systems, this requires efficiently monitoring, managing, and reacting to multiple event streams. Tools like Kafka, along with innovative patterns like unified log processing, help create a coherent data processing architecture for event-based applications. About the Book Event Streams in Action teaches you techniques for aggregating, storing, and processing event streams using the unified log processing pattern. In this hands-on guide, you'll discover important application designs like the lambda architecture, stream aggregation, and event reprocessing. You'll also explore scaling, resiliency, advanced stream patterns, and much more! By the time you're finished, you'll be designing large-scale data-driven applications that are easier to build, deploy, and maintain. What's inside Validating and monitoring event streams Event analytics Methods for event modeling Examples using Apache Kafka and Amazon Kinesis About the Reader For readers with experience coding in Java, Scala, or Python. About the Author Alexander Dean developed Snowplow, an open source event processing and analytics platform. Valentin Crettaz is an independent IT consultant with 25 years of experience. Table of Contents PART 1 - EVENT STREAMS AND UNIFIED LOGS Introducing event streams The unified log 24 Event stream processing with Apache Kafka Event stream processing with Amazon Kinesis Stateful stream processing PART 2- DATA ENGINEERING WITH STREAMS Schemas Archiving events Railway-oriented processing Commands PART 3 - EVENT ANALYTICS Analytics-on-read Analytics-on-write
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.