Author: K. J. Falconer
Publisher: Oxford University Press
ISBN: 0199675988
Category : Mathematics
Languages : en
Pages : 153
Book Description
An essential discussion of the popular science and mathematics behind fractals reveals how fractal shapes can be found everywhere in nature from clouds to coastlines, explaining how basic concepts in fractal geometry produced a revolution in mathematical understandings of patterns in the 20th century. Original.
Fractals: A Very Short Introduction
Author: Kenneth Falconer
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Measure, Topology, and Fractal Geometry
Author: Gerald A. Edgar
Publisher: Springer Science & Business Media
ISBN: 1475741340
Category : Mathematics
Languages : en
Pages : 252
Book Description
From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1
Publisher: Springer Science & Business Media
ISBN: 1475741340
Category : Mathematics
Languages : en
Pages : 252
Book Description
From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1
Chaos
Author: Leonard Smith
Publisher: Oxford University Press, USA
ISBN: 0192853783
Category : Mathematics
Languages : en
Pages : 201
Book Description
Chaos exists in systems all around us. This introduction draws in philosophy, literature, and maths to explain Chaos Theory, showing the variety of its applications in the real world, from technology to global warming, politics, and even gambling on the stock market.
Publisher: Oxford University Press, USA
ISBN: 0192853783
Category : Mathematics
Languages : en
Pages : 201
Book Description
Chaos exists in systems all around us. This introduction draws in philosophy, literature, and maths to explain Chaos Theory, showing the variety of its applications in the real world, from technology to global warming, politics, and even gambling on the stock market.
Infinity
Author: Ian Stewart
Publisher: Oxford University Press
ISBN: 0198755236
Category : Mathematics
Languages : en
Pages : 161
Book Description
Ian Stewart considers the concept of infinity and the profound role it plays in mathematics, logic, physics, cosmology, and philosophy. He shows that working with infinity is not just an abstract, intellectual exercise, and analyses its important practical everyday applications.
Publisher: Oxford University Press
ISBN: 0198755236
Category : Mathematics
Languages : en
Pages : 161
Book Description
Ian Stewart considers the concept of infinity and the profound role it plays in mathematics, logic, physics, cosmology, and philosophy. He shows that working with infinity is not just an abstract, intellectual exercise, and analyses its important practical everyday applications.
Fractals Everywhere
Author: Michael F. Barnsley
Publisher: Academic Press
ISBN: 148325769X
Category : Mathematics
Languages : en
Pages : 565
Book Description
Fractals Everywhere, Second Edition covers the fundamental approach to fractal geometry through iterated function systems. This 10-chapter text is based on a course called "Fractal Geometry", which has been taught in the School of Mathematics at the Georgia Institute of Technology. After a brief introduction to the subject, this book goes on dealing with the concepts and principles of spaces, contraction mappings, fractal construction, and the chaotic dynamics on fractals. Other chapters discuss fractal dimension and interpolation, the Julia sets, parameter spaces, and the Mandelbrot sets. The remaining chapters examine the measures on fractals and the practical application of recurrent iterated function systems. This book will prove useful to both undergraduate and graduate students from many disciplines, including mathematics, biology, chemistry, physics, psychology, mechanical, electrical, and aerospace engineering, computer science, and geophysical science.
Publisher: Academic Press
ISBN: 148325769X
Category : Mathematics
Languages : en
Pages : 565
Book Description
Fractals Everywhere, Second Edition covers the fundamental approach to fractal geometry through iterated function systems. This 10-chapter text is based on a course called "Fractal Geometry", which has been taught in the School of Mathematics at the Georgia Institute of Technology. After a brief introduction to the subject, this book goes on dealing with the concepts and principles of spaces, contraction mappings, fractal construction, and the chaotic dynamics on fractals. Other chapters discuss fractal dimension and interpolation, the Julia sets, parameter spaces, and the Mandelbrot sets. The remaining chapters examine the measures on fractals and the practical application of recurrent iterated function systems. This book will prove useful to both undergraduate and graduate students from many disciplines, including mathematics, biology, chemistry, physics, psychology, mechanical, electrical, and aerospace engineering, computer science, and geophysical science.
Chaos and Fractals
Author: C.A. Pickover
Publisher: Elsevier
ISBN: 0080528864
Category : Mathematics
Languages : en
Pages : 469
Book Description
These days computer-generated fractal patterns are everywhere, from squiggly designs on computer art posters to illustrations in the most serious of physics journals. Interest continues to grow among scientists and, rather surprisingly, artists and designers. This book provides visual demonstrations of complicated and beautiful structures that can arise in systems, based on simple rules. It also presents papers on seemingly paradoxical combinations of randomness and structure in systems of mathematical, physical, biological, electrical, chemical, and artistic interest. Topics include: iteration, cellular automata, bifurcation maps, fractals, dynamical systems, patterns of nature created through simple rules, and aesthetic graphics drawn from the universe of mathematics and art.Chaos and Fractals is divided into six parts: Geometry and Nature; Attractors; Cellular Automata, Gaskets, and Koch Curves; Mandelbrot, Julia and Other Complex Maps; Iterated Function Systems; and Computer Art.Additionally, information on the latest practical applications of fractals and on the use of fractals in commercial products such as the antennas and reaction vessels is presented. In short, fractals are increasingly finding application in practical products where computer graphics and simulations are integral to the design process. Each of the six sections has an introduction by the editor including the latest research, references, and updates in the field. This book is enhanced with numerous color illustrations, a comprehensive index, and the many computer program examples encourage reader involvement.
Publisher: Elsevier
ISBN: 0080528864
Category : Mathematics
Languages : en
Pages : 469
Book Description
These days computer-generated fractal patterns are everywhere, from squiggly designs on computer art posters to illustrations in the most serious of physics journals. Interest continues to grow among scientists and, rather surprisingly, artists and designers. This book provides visual demonstrations of complicated and beautiful structures that can arise in systems, based on simple rules. It also presents papers on seemingly paradoxical combinations of randomness and structure in systems of mathematical, physical, biological, electrical, chemical, and artistic interest. Topics include: iteration, cellular automata, bifurcation maps, fractals, dynamical systems, patterns of nature created through simple rules, and aesthetic graphics drawn from the universe of mathematics and art.Chaos and Fractals is divided into six parts: Geometry and Nature; Attractors; Cellular Automata, Gaskets, and Koch Curves; Mandelbrot, Julia and Other Complex Maps; Iterated Function Systems; and Computer Art.Additionally, information on the latest practical applications of fractals and on the use of fractals in commercial products such as the antennas and reaction vessels is presented. In short, fractals are increasingly finding application in practical products where computer graphics and simulations are integral to the design process. Each of the six sections has an introduction by the editor including the latest research, references, and updates in the field. This book is enhanced with numerous color illustrations, a comprehensive index, and the many computer program examples encourage reader involvement.
Fractals, Chaos, Power Laws
Author: Manfred Schroeder
Publisher: Courier Corporation
ISBN: 0486472043
Category : Science
Languages : en
Pages : 450
Book Description
This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. The author -- hailed by Publishers Weekly as a modern Lewis Carroll -- conveys memorable insights in the form of puns and puzzles. 1992 edition.
Publisher: Courier Corporation
ISBN: 0486472043
Category : Science
Languages : en
Pages : 450
Book Description
This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. The author -- hailed by Publishers Weekly as a modern Lewis Carroll -- conveys memorable insights in the form of puns and puzzles. 1992 edition.
Fractals
Author: Oliver Linton
Publisher: eBook Partnership
ISBN: 191270613X
Category : Mathematics
Languages : en
Pages : 64
Book Description
What are fractals? Why are they such fun? How do you make one? Why is a dripping tap not as random as it seems? What is chaos? Is the Mandelbrot Set really the most complex object in mathematics? In this beautifully illustrated book, fractal-hunter Oliver Linton takes us on a fascinating journey into the mathematics of fractals and chaos, diving into many kinds of self- similar structures to reveal some of the most recently discovered and intriguing patterns in science and nature. "e;Fascinating"e; FINANCIAL TIMES. "e;Beautiful"e; LONDON REVIEW OF BOOKS. "e;Rich and Artful"e; THE LANCET. "e;Genuinely mind-expanding"e; FORTEAN TIMES. "e;Excellent"e; NEW SCIENTIST. "e;Stunning"e; NEW YORK TIMES. Small books, big ideas.
Publisher: eBook Partnership
ISBN: 191270613X
Category : Mathematics
Languages : en
Pages : 64
Book Description
What are fractals? Why are they such fun? How do you make one? Why is a dripping tap not as random as it seems? What is chaos? Is the Mandelbrot Set really the most complex object in mathematics? In this beautifully illustrated book, fractal-hunter Oliver Linton takes us on a fascinating journey into the mathematics of fractals and chaos, diving into many kinds of self- similar structures to reveal some of the most recently discovered and intriguing patterns in science and nature. "e;Fascinating"e; FINANCIAL TIMES. "e;Beautiful"e; LONDON REVIEW OF BOOKS. "e;Rich and Artful"e; THE LANCET. "e;Genuinely mind-expanding"e; FORTEAN TIMES. "e;Excellent"e; NEW SCIENTIST. "e;Stunning"e; NEW YORK TIMES. Small books, big ideas.
Fractal Geometry and Number Theory
Author: Michel L. Lapidus
Publisher: Springer Science & Business Media
ISBN: 1461253144
Category : Mathematics
Languages : en
Pages : 277
Book Description
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
Publisher: Springer Science & Business Media
ISBN: 1461253144
Category : Mathematics
Languages : en
Pages : 277
Book Description
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.