MapReduce Design Patterns

MapReduce Design Patterns PDF Author: Donald Miner
Publisher: "O'Reilly Media, Inc."
ISBN: 1449341985
Category : Computers
Languages : en
Pages : 417

Book Description
Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop." --Tom White, author of Hadoop: The Definitive Guide

MapReduce Design Patterns

MapReduce Design Patterns PDF Author: Donald Miner
Publisher: "O'Reilly Media, Inc."
ISBN: 1449341993
Category : Computers
Languages : en
Pages : 249

Book Description
Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop." --Tom White, author of Hadoop: The Definitive Guide

Data-Intensive Text Processing with MapReduce

Data-Intensive Text Processing with MapReduce PDF Author: Jimmy Lin
Publisher: Springer Nature
ISBN: 3031021363
Category : Computers
Languages : en
Pages : 171

Book Description
Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks

Hadoop in Action

Hadoop in Action PDF Author: Chuck Lam
Publisher: Simon and Schuster
ISBN: 1638352100
Category : Computers
Languages : en
Pages : 471

Book Description
Hadoop in Action teaches readers how to use Hadoop and write MapReduce programs. The intended readers are programmers, architects, and project managers who have to process large amounts of data offline. Hadoop in Action will lead the reader from obtaining a copy of Hadoop to setting it up in a cluster and writing data analytic programs. The book begins by making the basic idea of Hadoop and MapReduce easier to grasp by applying the default Hadoop installation to a few easy-to-follow tasks, such as analyzing changes in word frequency across a body of documents. The book continues through the basic concepts of MapReduce applications developed using Hadoop, including a close look at framework components, use of Hadoop for a variety of data analysis tasks, and numerous examples of Hadoop in action. Hadoop in Action will explain how to use Hadoop and present design patterns and practices of programming MapReduce. MapReduce is a complex idea both conceptually and in its implementation, and Hadoop users are challenged to learn all the knobs and levers for running Hadoop. This book takes you beyond the mechanics of running Hadoop, teaching you to write meaningful programs in a MapReduce framework. This book assumes the reader will have a basic familiarity with Java, as most code examples will be written in Java. Familiarity with basic statistical concepts (e.g. histogram, correlation) will help the reader appreciate the more advanced data processing examples. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Data Algorithms

Data Algorithms PDF Author: Mahmoud Parsian
Publisher: "O'Reilly Media, Inc."
ISBN: 1491906154
Category : Computers
Languages : en
Pages : 778

Book Description
If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Cloud Architecture Patterns

Cloud Architecture Patterns PDF Author: Bill Wilder
Publisher: "O'Reilly Media, Inc."
ISBN: 1449319777
Category : Computers
Languages : en
Pages : 183

Book Description
Do you need to learn about cloud computing architecture with Microsoft's Azure quickly? Read this book! It gives you just enough info on the big picture and is filled with key terminology so that you can join the discussion on cloud architecture.

MongoDB Applied Design Patterns

MongoDB Applied Design Patterns PDF Author: Rick Copeland
Publisher: "O'Reilly Media, Inc."
ISBN: 1449340075
Category : Computers
Languages : en
Pages : 176

Book Description
Whether you’re building a social media site or an internal-use enterprise application, this hands-on guide shows you the connection between MongoDB and the business problems it’s designed to solve. You’ll learn how to apply MongoDB design patterns to several challenging domains, such as ecommerce, content management, and online gaming. Using Python and JavaScript code examples, you’ll discover how MongoDB lets you scale your data model while simplifying the development process. Many businesses launch NoSQL databases without understanding the techniques for using their features most effectively. This book demonstrates the benefits of document embedding, polymorphic schemas, and other MongoDB patterns for tackling specific big data use cases, including: Operational intelligence: Perform real-time analytics of business data Ecommerce: Use MongoDB as a product catalog master or inventory management system Content management: Learn methods for storing content nodes, binary assets, and discussions Online advertising networks: Apply techniques for frequency capping ad impressions, and keyword targeting and bidding Social networking: Learn how to store a complex social graph, modeled after Google+ Online gaming: Provide concurrent access to character and world data for a multiplayer role-playing game

Hadoop Application Architectures

Hadoop Application Architectures PDF Author: Mark Grover
Publisher: "O'Reilly Media, Inc."
ISBN: 1491900075
Category : Computers
Languages : en
Pages : 399

Book Description
Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing

Serverless Design Patterns and Best Practices

Serverless Design Patterns and Best Practices PDF Author: Brian Zambrano
Publisher: Packt Publishing Ltd
ISBN: 1788624386
Category : Computers
Languages : en
Pages : 254

Book Description
Get started with designing your serverless application using optimum design patterns and industry standard practices Key Features Learn the details of popular software patterns and how they are applied to serverless applications Understand key concepts and components in serverless designs Walk away with a thorough understanding of architecting serverless applications Book Description Serverless applications handle many problems that developers face when running systems and servers. The serverless pay-per-invocation model can also result in drastic cost savings, contributing to its popularity. While it's simple to create a basic serverless application, it's critical to structure your software correctly to ensure it continues to succeed as it grows. Serverless Design Patterns and Best Practices presents patterns that can be adapted to run in a serverless environment. You will learn how to develop applications that are scalable, fault tolerant, and well-tested. The book begins with an introduction to the different design pattern categories available for serverless applications. You will learn the trade-offs between GraphQL and REST and how they fare regarding overall application design in a serverless ecosystem. The book will also show you how to migrate an existing API to a serverless backend using AWS API Gateway. You will learn how to build event-driven applications using queuing and streaming systems, such as AWS Simple Queuing Service (SQS) and AWS Kinesis. Patterns for data-intensive serverless application are also explained, including the lambda architecture and MapReduce. This book will equip you with the knowledge and skills you need to develop scalable and resilient serverless applications confidently. What you will learn Comprehend the popular design patterns currently being used with serverless architectures Understand the various design options and corresponding implementations for serverless web application APIs Learn multiple patterns for data-intensive serverless systems and pipelines, including MapReduce and Lambda Architecture Learn how to leverage hosted databases, queues, streams, storage services, and notification services Understand error handling and system monitoring in a serverless architecture a serverless architecture Learn how to set up a serverless application for continuous integration, continuous delivery, and continuous deployment Who this book is for If you're a software architect, engineer, or someone who wants to build serverless applications, which are non-trivial in complexity and scope, then this book is for you. Basic knowledge of programming and serverless computing concepts are assumed.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.