An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108482295
Category : Computers
Languages : en
Pages : 351

Book Description
Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.

An Introduction to Category Theory

An Introduction to Category Theory PDF Author: Harold Simmons
Publisher: Cambridge University Press
ISBN: 1139503324
Category : Mathematics
Languages : en
Pages : 237

Book Description
Category theory provides a general conceptual framework that has proved fruitful in subjects as diverse as geometry, topology, theoretical computer science and foundational mathematics. Here is a friendly, easy-to-read textbook that explains the fundamentals at a level suitable for newcomers to the subject. Beginning postgraduate mathematicians will find this book an excellent introduction to all of the basics of category theory. It gives the basic definitions; goes through the various associated gadgetry, such as functors, natural transformations, limits and colimits; and then explains adjunctions. The material is slowly developed using many examples and illustrations to illuminate the concepts explained. Over 200 exercises, with solutions available online, help the reader to access the subject and make the book ideal for self-study. It can also be used as a recommended text for a taught introductory course.

Basic Category Theory for Computer Scientists

Basic Category Theory for Computer Scientists PDF Author: Benjamin C. Pierce
Publisher: MIT Press
ISBN: 0262326450
Category : Computers
Languages : en
Pages : 117

Book Description
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading

Category Theory for the Sciences

Category Theory for the Sciences PDF Author: David I. Spivak
Publisher: MIT Press
ISBN: 0262320533
Category : Mathematics
Languages : en
Pages : 495

Book Description
An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.

Basic Category Theory

Basic Category Theory PDF Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193

Book Description
A short introduction ideal for students learning category theory for the first time.

Theoretical Computer Science for the Working Category Theorist

Theoretical Computer Science for the Working Category Theorist PDF Author: Noson S. Yanofsky
Publisher: Cambridge University Press
ISBN: 9781108792745
Category : Mathematics
Languages : en
Pages : 150

Book Description
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.

Conceptual Mathematics

Conceptual Mathematics PDF Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 0521894859
Category : Mathematics
Languages : en
Pages : 409

Book Description
This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.

Categories and Computer Science

Categories and Computer Science PDF Author: R. F. C. Walters
Publisher: Cambridge University Press
ISBN: 9780521422260
Category : Computers
Languages : en
Pages : 180

Book Description
Category theory has become increasingly important and popular in computer science, and many universities now have introductions to category theory as part of their courses for undergraduate computer scientists. The author is a respected category theorist and has based this textbook on a course given over the last few years at the University of Sydney. The theory is developed in a straightforward way, and is enriched with many examples from computer science. Thus this book meets the needs of undergradute computer scientists, and yet retains a level of mathematical correctness that will broaden its appeal to include students of mathematics new to category theory.

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351

Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.