Author: S. L. Huang
Publisher: Tor Books
ISBN: 1250180317
Category : Fiction
Languages : en
Pages : 263
Book Description
S. L. Huang's Null Set is the breakout sf thriller for fans of John Scalzi and Greg Rucka Math-genius mercenary Cas Russell has decided to Fight Crime(tm). After all, with her extraordinary mathematical ability, she can neuter bombs or out-shoot an army. And the recent outbreak of violence in the world’s cities is Cas’s fault—she’s the one who crushed the organization of telepaths keeping the world’s worst offenders under control. But Cas’s own power also has a history, one she can’t remember—or control. One that's creeping into her mind and fracturing her sanity...just when she’s gotten herself on the hit list of every crime lord on the West Coast. And her best, only, sociopathic friend. Cas won’t be able to save the world. She might not even be able to save herself. At the Publisher's request, this title is being sold without Digital Rights Management Software (DRM) applied.
Mathematical Analysis
Author: Bernd S. W. Schröder
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
Publisher: John Wiley & Sons
ISBN: 9780470226766
Category : Mathematics
Languages : en
Pages : 584
Book Description
A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis and illustrates its role in mathematics. By focusing on the essentials, reinforcing learning through exercises, and featuring a unique "learn by doing" approach, the book develops the reader's proof writing skills and establishes fundamental comprehension of analysis that is essential for further exploration of pure and applied mathematics. This book is directly applicable to areas such as differential equations, probability theory, numerical analysis, differential geometry, and functional analysis. Mathematical Analysis is composed of three parts: ?Part One presents the analysis of functions of one variable, including sequences, continuity, differentiation, Riemann integration, series, and the Lebesgue integral. A detailed explanation of proof writing is provided with specific attention devoted to standard proof techniques. To facilitate an efficient transition to more abstract settings, the results for single variable functions are proved using methods that translate to metric spaces. ?Part Two explores the more abstract counterparts of the concepts outlined earlier in the text. The reader is introduced to the fundamental spaces of analysis, including Lp spaces, and the book successfully details how appropriate definitions of integration, continuity, and differentiation lead to a powerful and widely applicable foundation for further study of applied mathematics. The interrelation between measure theory, topology, and differentiation is then examined in the proof of the Multidimensional Substitution Formula. Further areas of coverage in this section include manifolds, Stokes' Theorem, Hilbert spaces, the convergence of Fourier series, and Riesz' Representation Theorem. ?Part Three provides an overview of the motivations for analysis as well as its applications in various subjects. A special focus on ordinary and partial differential equations presents some theoretical and practical challenges that exist in these areas. Topical coverage includes Navier-Stokes equations and the finite element method. Mathematical Analysis: A Concise Introduction includes an extensive index and over 900 exercises ranging in level of difficulty, from conceptual questions and adaptations of proofs to proofs with and without hints. These opportunities for reinforcement, along with the overall concise and well-organized treatment of analysis, make this book essential for readers in upper-undergraduate or beginning graduate mathematics courses who would like to build a solid foundation in analysis for further work in all analysis-based branches of mathematics.
Basic Set Theory
Author: Azriel Levy
Publisher: Courier Corporation
ISBN: 0486150739
Category : Mathematics
Languages : en
Pages : 418
Book Description
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
Publisher: Courier Corporation
ISBN: 0486150739
Category : Mathematics
Languages : en
Pages : 418
Book Description
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
Set Theoretical Aspects of Real Analysis
Author: Alexander B. Kharazishvili
Publisher: CRC Press
ISBN: 148224201X
Category : Mathematics
Languages : en
Pages : 457
Book Description
Set Theoretical Aspects of Real Analysis is built around a number of questions in real analysis and classical measure theory, which are of a set theoretic flavor. Accessible to graduate students, and researchers the beginning of the book presents introductory topics on real analysis and Lebesgue measure theory. These topics highlight the boundary between fundamental concepts of measurability and nonmeasurability for point sets and functions. The remainder of the book deals with more specialized material on set theoretical real analysis. The book focuses on certain logical and set theoretical aspects of real analysis. It is expected that the first eleven chapters can be used in a course on Lebesque measure theory that highlights the fundamental concepts of measurability and non-measurability for point sets and functions. Provided in the book are problems of varying difficulty that range from simple observations to advanced results. Relatively difficult exercises are marked by asterisks and hints are included with additional explanation. Five appendices are included to supply additional background information that can be read alongside, before, or after the chapters. Dealing with classical concepts, the book highlights material not often found in analysis courses. It lays out, in a logical, systematic manner, the foundations of set theory providing a readable treatment accessible to graduate students and researchers.
Publisher: CRC Press
ISBN: 148224201X
Category : Mathematics
Languages : en
Pages : 457
Book Description
Set Theoretical Aspects of Real Analysis is built around a number of questions in real analysis and classical measure theory, which are of a set theoretic flavor. Accessible to graduate students, and researchers the beginning of the book presents introductory topics on real analysis and Lebesgue measure theory. These topics highlight the boundary between fundamental concepts of measurability and nonmeasurability for point sets and functions. The remainder of the book deals with more specialized material on set theoretical real analysis. The book focuses on certain logical and set theoretical aspects of real analysis. It is expected that the first eleven chapters can be used in a course on Lebesque measure theory that highlights the fundamental concepts of measurability and non-measurability for point sets and functions. Provided in the book are problems of varying difficulty that range from simple observations to advanced results. Relatively difficult exercises are marked by asterisks and hints are included with additional explanation. Five appendices are included to supply additional background information that can be read alongside, before, or after the chapters. Dealing with classical concepts, the book highlights material not often found in analysis courses. It lays out, in a logical, systematic manner, the foundations of set theory providing a readable treatment accessible to graduate students and researchers.
SQL and Relational Theory
Author: C. Date
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316409
Category : Computers
Languages : en
Pages : 447
Book Description
SQL is full of difficulties and traps for the unwary. You can avoid them if you understand relational theory, but only if you know how to put the theory into practice. In this insightful book, author C.J. Date explains relational theory in depth, and demonstrates through numerous examples and exercises how you can apply it directly to your use of SQL. This second edition includes new material on recursive queries, “missing information” without nulls, new update operators, and topics such as aggregate operators, grouping and ungrouping, and view updating. If you have a modest-to-advanced background in SQL, you’ll learn how to deal with a host of common SQL dilemmas. Why is proper column naming so important? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Is it possible to write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports “quantified comparisons,” but they’re better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don’t support them properly. What can you do to resolve this situation? Database theory and practice have evolved since the relational model was developed more than 40 years ago. SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of SQL available. C.J. Date has a stature that is unique within the database industry. A prolific writer well known for the bestselling textbook An Introduction to Database Systems (Addison-Wesley), he has an exceptionally clear style when writing about complex principles and theory.
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316409
Category : Computers
Languages : en
Pages : 447
Book Description
SQL is full of difficulties and traps for the unwary. You can avoid them if you understand relational theory, but only if you know how to put the theory into practice. In this insightful book, author C.J. Date explains relational theory in depth, and demonstrates through numerous examples and exercises how you can apply it directly to your use of SQL. This second edition includes new material on recursive queries, “missing information” without nulls, new update operators, and topics such as aggregate operators, grouping and ungrouping, and view updating. If you have a modest-to-advanced background in SQL, you’ll learn how to deal with a host of common SQL dilemmas. Why is proper column naming so important? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Is it possible to write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports “quantified comparisons,” but they’re better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don’t support them properly. What can you do to resolve this situation? Database theory and practice have evolved since the relational model was developed more than 40 years ago. SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of SQL available. C.J. Date has a stature that is unique within the database industry. A prolific writer well known for the bestselling textbook An Introduction to Database Systems (Addison-Wesley), he has an exceptionally clear style when writing about complex principles and theory.
Boolean Algebra and Its Applications
Author: J. Eldon Whitesitt
Publisher: Courier Corporation
ISBN: 0486158160
Category : Mathematics
Languages : en
Pages : 194
Book Description
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486158160
Category : Mathematics
Languages : en
Pages : 194
Book Description
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician
Author: Winfried Just
Publisher: American Mathematical Soc.
ISBN: 0821805282
Category : Mathematics
Languages : en
Pages : 240
Book Description
This is the second volume of a two-volume graduate text in set theory. The first volume covered the basics of modern set theory and was addressed primarily to beginning graduate students. The second volume is intended as a bridge between introductory set theory courses such as the first volume and advanced monographs that cover selected branches of set theory. The authors give short but rigorous introductions to set-theoretic concepts and techniques such as trees, partition calculus, cardinal invariants of the continuum, Martin's Axiom, closed unbounded and stationary sets, the Diamond Principle, and the use of elementary submodels. Great care is taken to motivate concepts and theorems presented.
Publisher: American Mathematical Soc.
ISBN: 0821805282
Category : Mathematics
Languages : en
Pages : 240
Book Description
This is the second volume of a two-volume graduate text in set theory. The first volume covered the basics of modern set theory and was addressed primarily to beginning graduate students. The second volume is intended as a bridge between introductory set theory courses such as the first volume and advanced monographs that cover selected branches of set theory. The authors give short but rigorous introductions to set-theoretic concepts and techniques such as trees, partition calculus, cardinal invariants of the continuum, Martin's Axiom, closed unbounded and stationary sets, the Diamond Principle, and the use of elementary submodels. Great care is taken to motivate concepts and theorems presented.
Algorithmic Learning Theory
Author: Yoav Freund
Publisher: Springer Science & Business Media
ISBN: 3540879862
Category : Computers
Languages : en
Pages : 480
Book Description
This book constitutes the refereed proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, held in Budapest, Hungary, in October 2008, co-located with the 11th International Conference on Discovery Science, DS 2008. The 31 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 46 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as statistical learning; probability and stochastic processes; boosting and experts; active and query learning; and inductive inference.
Publisher: Springer Science & Business Media
ISBN: 3540879862
Category : Computers
Languages : en
Pages : 480
Book Description
This book constitutes the refereed proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, held in Budapest, Hungary, in October 2008, co-located with the 11th International Conference on Discovery Science, DS 2008. The 31 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 46 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as statistical learning; probability and stochastic processes; boosting and experts; active and query learning; and inductive inference.