Author: Iris van Rooij
Publisher: Cambridge University Press
ISBN: 1107043999
Category : Computers
Languages : en
Pages : 375
Book Description
Provides an accessible introduction to computational complexity analysis and its application to questions of intractability in cognitive science.
What Can Be Computed?
Author: John MacCormick
Publisher: Princeton University Press
ISBN: 0691170665
Category : Computers
Languages : en
Pages : 404
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Publisher: Princeton University Press
ISBN: 0691170665
Category : Computers
Languages : en
Pages : 404
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
The Nature of Computation
Author: Cristopher Moore
Publisher: OUP Oxford
ISBN: 0191620807
Category : Science
Languages : en
Pages : 1498
Book Description
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.
Publisher: OUP Oxford
ISBN: 0191620807
Category : Science
Languages : en
Pages : 1498
Book Description
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.
Computers and Intractability
Author: Michael R. Garey
Publisher: W.H. Freeman
ISBN:
Category : Algorithms
Languages : en
Pages : 364
Book Description
"Shows how to recognize NP-complete problems and offers proactical suggestions for dealing with them effectively. The book covers the basic theory of NP-completeness, provides an overview of alternative directions for further research, and contains and extensive list of NP-complete and NP-hard problems, with more than 300 main entries and several times as many results in total. [This book] is suitable as a supplement to courses in algorithm design, computational complexity, operations research, or combinatorial mathematics, and as a text for seminars on approximation algorithms or computational complexity. It provides not only a valuable source of information for students but also an essential reference work for professionals in computer science"--Back cover.
Publisher: W.H. Freeman
ISBN:
Category : Algorithms
Languages : en
Pages : 364
Book Description
"Shows how to recognize NP-complete problems and offers proactical suggestions for dealing with them effectively. The book covers the basic theory of NP-completeness, provides an overview of alternative directions for further research, and contains and extensive list of NP-complete and NP-hard problems, with more than 300 main entries and several times as many results in total. [This book] is suitable as a supplement to courses in algorithm design, computational complexity, operations research, or combinatorial mathematics, and as a text for seminars on approximation algorithms or computational complexity. It provides not only a valuable source of information for students but also an essential reference work for professionals in computer science"--Back cover.
The Computational Complexity of Machine Learning
Author: Michael J. Kearns
Publisher: MIT Press
ISBN: 9780262111522
Category : Computers
Languages : en
Pages : 194
Book Description
We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."
Publisher: MIT Press
ISBN: 9780262111522
Category : Computers
Languages : en
Pages : 194
Book Description
We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."
Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Computer Science
Author: Robert Sedgewick
Publisher: Addison-Wesley Professional
ISBN: 0134076451
Category : Computers
Languages : en
Pages : 2172
Book Description
Named a Notable Book in the 21st Annual Best of Computing list by the ACM! Robert Sedgewick and Kevin Wayne’s Computer Science: An Interdisciplinary Approach is the ideal modern introduction to computer science with Java programming for both students and professionals. Taking a broad, applications-based approach, Sedgewick and Wayne teach through important examples from science, mathematics, engineering, finance, and commercial computing. The book demystifies computation, explains its intellectual underpinnings, and covers the essential elements of programming and computational problem solving in today’s environments. The authors begin by introducing basic programming elements such as variables, conditionals, loops, arrays, and I/O. Next, they turn to functions, introducing key modular programming concepts, including components and reuse. They present a modern introduction to object-oriented programming, covering current programming paradigms and approaches to data abstraction. Building on this foundation, Sedgewick and Wayne widen their focus to the broader discipline of computer science. They introduce classical sorting and searching algorithms, fundamental data structures and their application, and scientific techniques for assessing an implementation’s performance. Using abstract models, readers learn to answer basic questions about computation, gaining insight for practical application. Finally, the authors show how machine architecture links the theory of computing to real computers, and to the field’s history and evolution. For each concept, the authors present all the information readers need to build confidence, together with examples that solve intriguing problems. Each chapter contains question-and-answer sections, self-study drills, and challenging problems that demand creative solutions. Companion web site (introcs.cs.princeton.edu/java) contains Extensive supplementary information, including suggested approaches to programming assignments, checklists, and FAQs Graphics and sound libraries Links to program code and test data Solutions to selected exercises Chapter summaries Detailed instructions for installing a Java programming environment Detailed problem sets and projects Companion 20-part series of video lectures is available at informit.com/title/9780134493831
Publisher: Addison-Wesley Professional
ISBN: 0134076451
Category : Computers
Languages : en
Pages : 2172
Book Description
Named a Notable Book in the 21st Annual Best of Computing list by the ACM! Robert Sedgewick and Kevin Wayne’s Computer Science: An Interdisciplinary Approach is the ideal modern introduction to computer science with Java programming for both students and professionals. Taking a broad, applications-based approach, Sedgewick and Wayne teach through important examples from science, mathematics, engineering, finance, and commercial computing. The book demystifies computation, explains its intellectual underpinnings, and covers the essential elements of programming and computational problem solving in today’s environments. The authors begin by introducing basic programming elements such as variables, conditionals, loops, arrays, and I/O. Next, they turn to functions, introducing key modular programming concepts, including components and reuse. They present a modern introduction to object-oriented programming, covering current programming paradigms and approaches to data abstraction. Building on this foundation, Sedgewick and Wayne widen their focus to the broader discipline of computer science. They introduce classical sorting and searching algorithms, fundamental data structures and their application, and scientific techniques for assessing an implementation’s performance. Using abstract models, readers learn to answer basic questions about computation, gaining insight for practical application. Finally, the authors show how machine architecture links the theory of computing to real computers, and to the field’s history and evolution. For each concept, the authors present all the information readers need to build confidence, together with examples that solve intriguing problems. Each chapter contains question-and-answer sections, self-study drills, and challenging problems that demand creative solutions. Companion web site (introcs.cs.princeton.edu/java) contains Extensive supplementary information, including suggested approaches to programming assignments, checklists, and FAQs Graphics and sound libraries Links to program code and test data Solutions to selected exercises Chapter summaries Detailed instructions for installing a Java programming environment Detailed problem sets and projects Companion 20-part series of video lectures is available at informit.com/title/9780134493831
Intractable Conflicts
Author: Daniel Bar-Tal
Publisher: Cambridge University Press
ISBN: 0521867088
Category : Political Science
Languages : en
Pages : 583
Book Description
This book provides a comprehensive, interdisciplinary, original, and holistic analysis of the socio-psychological dynamics of intractable conflicts. Daniel Bar-Tal's analysis rests on the premise that intractable conflicts share certain socio-psychological foundations, despite differences in context and other characteristics. He describes a full cycle of intractable conflicts - their outbreak, escalation, and reconciliation through peace building.
Publisher: Cambridge University Press
ISBN: 0521867088
Category : Political Science
Languages : en
Pages : 583
Book Description
This book provides a comprehensive, interdisciplinary, original, and holistic analysis of the socio-psychological dynamics of intractable conflicts. Daniel Bar-Tal's analysis rests on the premise that intractable conflicts share certain socio-psychological foundations, despite differences in context and other characteristics. He describes a full cycle of intractable conflicts - their outbreak, escalation, and reconciliation through peace building.
P, NP, and NP-Completeness
Author: Oded Goldreich
Publisher: Cambridge University Press
ISBN: 1139490095
Category : Computers
Languages : en
Pages :
Book Description
The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.
Publisher: Cambridge University Press
ISBN: 1139490095
Category : Computers
Languages : en
Pages :
Book Description
The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.