Author: Kyran Dale
Publisher: "O'Reilly Media, Inc."
ISBN: 1491920548
Category : Computers
Languages : en
Pages : 581
Book Description
Learn how to turn raw data into rich, interactive web visualizations with the powerful combination of Python and JavaScript. With this hands-on guide, author Kyran Dale teaches you how build a basic dataviz toolchain with best-of-breed Python and JavaScript libraries—including Scrapy, Matplotlib, Pandas, Flask, and D3—for crafting engaging, browser-based visualizations. As a working example, throughout the book Dale walks you through transforming Wikipedia’s table-based list of Nobel Prize winners into an interactive visualization. You’ll examine steps along the entire toolchain, from scraping, cleaning, exploring, and delivering data to building the visualization with JavaScript’s D3 library. If you’re ready to create your own web-based data visualizations—and know either Python or JavaScript— this is the book for you. Learn how to manipulate data with Python Understand the commonalities between Python and JavaScript Extract information from websites by using Python’s web-scraping tools, BeautifulSoup and Scrapy Clean and explore data with Python’s Pandas, Matplotlib, and Numpy libraries Serve data and create RESTful web APIs with Python’s Flask framework Create engaging, interactive web visualizations with JavaScript’s D3 library
Data Visualization with JavaScript
Author: Stephen A. Thomas
Publisher: No Starch Press
ISBN: 1593276052
Category : Computers
Languages : en
Pages : 381
Book Description
You've got data to communicate. But what kind of visualization do you choose, how do you build it, and how do you ensure that it's up to the demands of the Web? In Data Visualization with JavaScript, you'll learn how to use JavaScript, HTML, and CSS to build the most practical visualizations for your data. Step-by-step examples walk you through creating, integrating, and debugging different types of visualizations and will have you building basic visualizations, like bar, line, and scatter graphs, in no time. Then you'll move on to more advanced topics, including how to: Create tree maps, heat maps, network graphs, word clouds, and timelines Map geographic data, and build sparklines and composite charts Add interactivity and retrieve data with AJAX Manage data in the browser and build data-driven web applications Harness the power of the Flotr2, Flot, Chronoline.js, D3.js, Underscore.js, and Backbone.js libraries If you already know your way around building a web page but aren't quite sure how to build a good visualization, Data Visualization with JavaScript will help you get your feet wet without throwing you into the deep end. Before you know it, you'll be well on your way to creating simple, powerful data visualizations.
Publisher: No Starch Press
ISBN: 1593276052
Category : Computers
Languages : en
Pages : 381
Book Description
You've got data to communicate. But what kind of visualization do you choose, how do you build it, and how do you ensure that it's up to the demands of the Web? In Data Visualization with JavaScript, you'll learn how to use JavaScript, HTML, and CSS to build the most practical visualizations for your data. Step-by-step examples walk you through creating, integrating, and debugging different types of visualizations and will have you building basic visualizations, like bar, line, and scatter graphs, in no time. Then you'll move on to more advanced topics, including how to: Create tree maps, heat maps, network graphs, word clouds, and timelines Map geographic data, and build sparklines and composite charts Add interactivity and retrieve data with AJAX Manage data in the browser and build data-driven web applications Harness the power of the Flotr2, Flot, Chronoline.js, D3.js, Underscore.js, and Backbone.js libraries If you already know your way around building a web page but aren't quite sure how to build a good visualization, Data Visualization with JavaScript will help you get your feet wet without throwing you into the deep end. Before you know it, you'll be well on your way to creating simple, powerful data visualizations.
JavaScript and jQuery for Data Analysis and Visualization
Author: Jon Raasch
Publisher: John Wiley & Sons
ISBN: 1118847067
Category : Computers
Languages : en
Pages : 480
Book Description
Go beyond design concepts—build dynamic data visualizations using JavaScript JavaScript and jQuery for Data Analysis and Visualization goes beyond design concepts to show readers how to build dynamic, best-of-breed visualizations using JavaScript—the most popular language for web programming. The authors show data analysts, developers, and web designers how they can put the power and flexibility of modern JavaScript libraries to work to analyze data and then present it using best-of-breed visualizations. They also demonstrate the use of each technique with real-world use cases, showing how to apply the appropriate JavaScript and jQuery libraries to achieve the desired visualization. All of the key techniques and tools are explained in this full-color, step-by-step guide. The companion website includes all sample codes used to generate the visualizations in the book, data sets, and links to the libraries and other resources covered. Go beyond basic design concepts and get a firm grasp of visualization approaches and techniques using JavaScript and jQuery Discover detailed, step-by-step directions for building specific types of data visualizations in this full-color guide Learn more about the core JavaScript and jQuery libraries that enable analysis and visualization Find compelling stories in complex data, and create amazing visualizations cost-effectively Let JavaScript and jQuery for Data Analysis and Visualization be the resource that guides you through the myriad strategies and solutions for combining analysis and visualization with stunning results.
Publisher: John Wiley & Sons
ISBN: 1118847067
Category : Computers
Languages : en
Pages : 480
Book Description
Go beyond design concepts—build dynamic data visualizations using JavaScript JavaScript and jQuery for Data Analysis and Visualization goes beyond design concepts to show readers how to build dynamic, best-of-breed visualizations using JavaScript—the most popular language for web programming. The authors show data analysts, developers, and web designers how they can put the power and flexibility of modern JavaScript libraries to work to analyze data and then present it using best-of-breed visualizations. They also demonstrate the use of each technique with real-world use cases, showing how to apply the appropriate JavaScript and jQuery libraries to achieve the desired visualization. All of the key techniques and tools are explained in this full-color, step-by-step guide. The companion website includes all sample codes used to generate the visualizations in the book, data sets, and links to the libraries and other resources covered. Go beyond basic design concepts and get a firm grasp of visualization approaches and techniques using JavaScript and jQuery Discover detailed, step-by-step directions for building specific types of data visualizations in this full-color guide Learn more about the core JavaScript and jQuery libraries that enable analysis and visualization Find compelling stories in complex data, and create amazing visualizations cost-effectively Let JavaScript and jQuery for Data Analysis and Visualization be the resource that guides you through the myriad strategies and solutions for combining analysis and visualization with stunning results.
Interactive Data Visualization for the Web
Author: Scott Murray
Publisher: "O'Reilly Media, Inc."
ISBN: 1449339735
Category : Computers
Languages : en
Pages : 269
Book Description
Create and publish your own interactive data visualization projects on the Web, even if you have no experience with either web development or data visualization. It’s easy with this hands-on guide. You’ll start with an overview of data visualization concepts and simple web technologies, and then learn how to use D3, a JavaScript library that lets you express data as visual elements in a web page. Interactive Data Visualization for the Web makes these skills available at an introductory level for designers and visual artists without programming experience, journalists interested in the emerging data journalism processes, and others keenly interested in visualization and publicly available data sources. Get a practical introduction to data visualization, accessible for beginners Focus on web-based tools that help you publish your creations quickly to a wide audience Learn about interactivity so you can engage users in exploring your data
Publisher: "O'Reilly Media, Inc."
ISBN: 1449339735
Category : Computers
Languages : en
Pages : 269
Book Description
Create and publish your own interactive data visualization projects on the Web, even if you have no experience with either web development or data visualization. It’s easy with this hands-on guide. You’ll start with an overview of data visualization concepts and simple web technologies, and then learn how to use D3, a JavaScript library that lets you express data as visual elements in a web page. Interactive Data Visualization for the Web makes these skills available at an introductory level for designers and visual artists without programming experience, journalists interested in the emerging data journalism processes, and others keenly interested in visualization and publicly available data sources. Get a practical introduction to data visualization, accessible for beginners Focus on web-based tools that help you publish your creations quickly to a wide audience Learn about interactivity so you can engage users in exploring your data
Interactive Data Visualization with Python
Author: Abha Belorkar
Publisher: Packt Publishing Ltd
ISBN: 1800201060
Category : Computers
Languages : en
Pages : 362
Book Description
Create your own clear and impactful interactive data visualizations with the powerful data visualization libraries of Python Key FeaturesStudy and use Python interactive libraries, such as Bokeh and PlotlyExplore different visualization principles and understand when to use which oneCreate interactive data visualizations with real-world dataBook Description With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python. You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model. By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories. What you will learnExplore and apply different interactive data visualization techniquesManipulate plotting parameters and styles to create appealing plotsCustomize data visualization for different audiencesDesign data visualizations using interactive librariesUse Matplotlib, Seaborn, Altair and Bokeh for drawing appealing plotsCustomize data visualization for different scenariosWho this book is for This book intends to provide a solid training ground for Python developers, data analysts and data scientists to enable them to present critical data insights in a way that best captures the user's attention and imagination. It serves as a simple step-by-step guide that demonstrates the different types and components of visualization, the principles, and techniques of effective interactivity, as well as common pitfalls to avoid when creating interactive data visualizations. Students should have an intermediate level of competency in writing Python code, as well as some familiarity with using libraries such as pandas.
Publisher: Packt Publishing Ltd
ISBN: 1800201060
Category : Computers
Languages : en
Pages : 362
Book Description
Create your own clear and impactful interactive data visualizations with the powerful data visualization libraries of Python Key FeaturesStudy and use Python interactive libraries, such as Bokeh and PlotlyExplore different visualization principles and understand when to use which oneCreate interactive data visualizations with real-world dataBook Description With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python. You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model. By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories. What you will learnExplore and apply different interactive data visualization techniquesManipulate plotting parameters and styles to create appealing plotsCustomize data visualization for different audiencesDesign data visualizations using interactive librariesUse Matplotlib, Seaborn, Altair and Bokeh for drawing appealing plotsCustomize data visualization for different scenariosWho this book is for This book intends to provide a solid training ground for Python developers, data analysts and data scientists to enable them to present critical data insights in a way that best captures the user's attention and imagination. It serves as a simple step-by-step guide that demonstrates the different types and components of visualization, the principles, and techniques of effective interactivity, as well as common pitfalls to avoid when creating interactive data visualizations. Students should have an intermediate level of competency in writing Python code, as well as some familiarity with using libraries such as pandas.
Hands-On Data Analysis with Pandas
Author: Stefanie Molin
Publisher: Packt Publishing Ltd
ISBN: 1789612802
Category : Computers
Languages : en
Pages : 702
Book Description
Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery Key FeaturesPerform efficient data analysis and manipulation tasks using pandasApply pandas to different real-world domains using step-by-step demonstrationsGet accustomed to using pandas as an effective data exploration toolBook Description Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. What you will learnUnderstand how data analysts and scientists gather and analyze dataPerform data analysis and data wrangling in PythonCombine, group, and aggregate data from multiple sourcesCreate data visualizations with pandas, matplotlib, and seabornApply machine learning (ML) algorithms to identify patterns and make predictionsUse Python data science libraries to analyze real-world datasetsUse pandas to solve common data representation and analysis problemsBuild Python scripts, modules, and packages for reusable analysis codeWho this book is for This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.
Publisher: Packt Publishing Ltd
ISBN: 1789612802
Category : Computers
Languages : en
Pages : 702
Book Description
Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery Key FeaturesPerform efficient data analysis and manipulation tasks using pandasApply pandas to different real-world domains using step-by-step demonstrationsGet accustomed to using pandas as an effective data exploration toolBook Description Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. What you will learnUnderstand how data analysts and scientists gather and analyze dataPerform data analysis and data wrangling in PythonCombine, group, and aggregate data from multiple sourcesCreate data visualizations with pandas, matplotlib, and seabornApply machine learning (ML) algorithms to identify patterns and make predictionsUse Python data science libraries to analyze real-world datasetsUse pandas to solve common data representation and analysis problemsBuild Python scripts, modules, and packages for reusable analysis codeWho this book is for This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.
D3. Js in Action
Author: Elijah Meeks
Publisher: Manning Publications
ISBN: 9781617294488
Category : Computer graphics
Languages : en
Pages : 375
Book Description
Summary D3.js in Action, Second Edition is completely revised and updated for D3 v4 and ES6. It's a practical tutorial for creating interactive graphics and data-driven applications using D3. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Visualizing complex data is hard. Visualizing complex data on the web is darn near impossible without D3.js. D3 is a JavaScript library that provides a simple but powerful data visualization API over HTML, CSS, and SVG. Start with a structure, dataset, or algorithm; mix in D3; and you can programmatically generate static, animated, or interactive images that scale to any screen or browser. It's easy, and after a little practice, you'll be blown away by how beautiful your results can be! About the Book D3.js in Action, Second Edition is a completely updated revision of Manning's bestselling guide to data visualization with D3. You'll explore dozens of real-world examples, including force and network diagrams, workflow illustrations, geospatial constructions, and more. Along the way, you'll pick up best practices for building interactive graphics, animations, and live data representations. You'll also step through a fully interactive application created with D3 and React. What's Inside Updated for D3 v4 and ES6 Reusable layouts and components Geospatial data visualizations Mixed-mode rendering About the Reader Suitable for web developers with HTML, CSS, and JavaScript skills. No specialized data science skills required. About the Author Elijah Meeks is a senior data visualization engineer at Netflix. Table of Contents PART 1 - D3.JS FUNDAMENTALS An introduction to D3.js Information visualization data flow Data-driven design and interaction Chart components Layouts PART 2 - COMPLEX DATA VISUALIZATION Hierarchical visualization Network visualization Geospatial information visualization PART 3 - ADVANCED TECHNIQUES Interactive applications with React and D3 Writing layouts and components Mixed mode rendering
Publisher: Manning Publications
ISBN: 9781617294488
Category : Computer graphics
Languages : en
Pages : 375
Book Description
Summary D3.js in Action, Second Edition is completely revised and updated for D3 v4 and ES6. It's a practical tutorial for creating interactive graphics and data-driven applications using D3. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Visualizing complex data is hard. Visualizing complex data on the web is darn near impossible without D3.js. D3 is a JavaScript library that provides a simple but powerful data visualization API over HTML, CSS, and SVG. Start with a structure, dataset, or algorithm; mix in D3; and you can programmatically generate static, animated, or interactive images that scale to any screen or browser. It's easy, and after a little practice, you'll be blown away by how beautiful your results can be! About the Book D3.js in Action, Second Edition is a completely updated revision of Manning's bestselling guide to data visualization with D3. You'll explore dozens of real-world examples, including force and network diagrams, workflow illustrations, geospatial constructions, and more. Along the way, you'll pick up best practices for building interactive graphics, animations, and live data representations. You'll also step through a fully interactive application created with D3 and React. What's Inside Updated for D3 v4 and ES6 Reusable layouts and components Geospatial data visualizations Mixed-mode rendering About the Reader Suitable for web developers with HTML, CSS, and JavaScript skills. No specialized data science skills required. About the Author Elijah Meeks is a senior data visualization engineer at Netflix. Table of Contents PART 1 - D3.JS FUNDAMENTALS An introduction to D3.js Information visualization data flow Data-driven design and interaction Chart components Layouts PART 2 - COMPLEX DATA VISUALIZATION Hierarchical visualization Network visualization Geospatial information visualization PART 3 - ADVANCED TECHNIQUES Interactive applications with React and D3 Writing layouts and components Mixed mode rendering
Interactive Dashboards and Data Apps with Plotly and Dash
Author: Elias Dabbas
Publisher: Packt Publishing Ltd
ISBN: 1800560354
Category : Computers
Languages : en
Pages : 364
Book Description
Build web-based, mobile-friendly analytic apps and interactive dashboards with Python Key Features Develop data apps and dashboards without any knowledge of JavaScript Map different types of data such as integers, floats, and dates to bar charts, scatter plots, and more Create controls and visual elements with multiple inputs and outputs and add functionality to the app as per your requirements Book DescriptionPlotly's Dash framework is a life-saver for Python developers who want to develop complete data apps and interactive dashboards without JavaScript, but you'll need to have the right guide to make sure you’re getting the most of it. With the help of this book, you'll be able to explore the functionalities of Dash for visualizing data in different ways. Interactive Dashboards and Data Apps with Plotly and Dash will first give you an overview of the Dash ecosystem, its main packages, and the third-party packages crucial for structuring and building different parts of your apps. You'll learn how to create a basic Dash app and add different features to it. Next, you’ll integrate controls such as dropdowns, checkboxes, sliders, date pickers, and more in the app and then link them to charts and other outputs. Depending on the data you are visualizing, you'll also add several types of charts, including scatter plots, line plots, bar charts, histograms, and maps, as well as explore the options available for customizing them. By the end of this book, you'll have developed the skills you need to create and deploy an interactive dashboard, handle complexities and code refactoring, and understand the process of improving your application.What you will learn Find out how to run a fully interactive and easy-to-use app Convert your charts to various formats including images and HTML files Use Plotly Express and the grammar of graphics for easily mapping data to various visual attributes Create different chart types, such as bar charts, scatter plots, histograms, maps, and more Expand your app by creating dynamic pages that generate content based on URLs Implement new callbacks to manage charts based on URLs and vice versa Who this book is for This Plotly Dash book is for data professionals and data analysts who want to gain a better understanding of their data with the help of different visualizations and dashboards – and without having to use JS. Basic knowledge of the Python programming language and HTML will help you to grasp the concepts covered in this book more effectively, but it’s not a prerequisite.
Publisher: Packt Publishing Ltd
ISBN: 1800560354
Category : Computers
Languages : en
Pages : 364
Book Description
Build web-based, mobile-friendly analytic apps and interactive dashboards with Python Key Features Develop data apps and dashboards without any knowledge of JavaScript Map different types of data such as integers, floats, and dates to bar charts, scatter plots, and more Create controls and visual elements with multiple inputs and outputs and add functionality to the app as per your requirements Book DescriptionPlotly's Dash framework is a life-saver for Python developers who want to develop complete data apps and interactive dashboards without JavaScript, but you'll need to have the right guide to make sure you’re getting the most of it. With the help of this book, you'll be able to explore the functionalities of Dash for visualizing data in different ways. Interactive Dashboards and Data Apps with Plotly and Dash will first give you an overview of the Dash ecosystem, its main packages, and the third-party packages crucial for structuring and building different parts of your apps. You'll learn how to create a basic Dash app and add different features to it. Next, you’ll integrate controls such as dropdowns, checkboxes, sliders, date pickers, and more in the app and then link them to charts and other outputs. Depending on the data you are visualizing, you'll also add several types of charts, including scatter plots, line plots, bar charts, histograms, and maps, as well as explore the options available for customizing them. By the end of this book, you'll have developed the skills you need to create and deploy an interactive dashboard, handle complexities and code refactoring, and understand the process of improving your application.What you will learn Find out how to run a fully interactive and easy-to-use app Convert your charts to various formats including images and HTML files Use Plotly Express and the grammar of graphics for easily mapping data to various visual attributes Create different chart types, such as bar charts, scatter plots, histograms, maps, and more Expand your app by creating dynamic pages that generate content based on URLs Implement new callbacks to manage charts based on URLs and vice versa Who this book is for This Plotly Dash book is for data professionals and data analysts who want to gain a better understanding of their data with the help of different visualizations and dashboards – and without having to use JS. Basic knowledge of the Python programming language and HTML will help you to grasp the concepts covered in this book more effectively, but it’s not a prerequisite.
Data Visualization with Python and JavaScript
Author: Kyran Dale
Publisher: "O'Reilly Media, Inc."
ISBN: 1098111826
Category : Computers
Languages : en
Pages : 555
Book Description
How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and JavaScript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and JavaScript libraries. Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while JavaScript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started. You'll learn how to: Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with pandas+Matplotlib+Seaborn Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries
Publisher: "O'Reilly Media, Inc."
ISBN: 1098111826
Category : Computers
Languages : en
Pages : 555
Book Description
How do you turn raw, unprocessed, or malformed data into dynamic, interactive web visualizations? In this practical book, author Kyran Dale shows data scientists and analysts--as well as Python and JavaScript developers--how to create the ideal toolchain for the job. By providing engaging examples and stressing hard-earned best practices, this guide teaches you how to leverage the power of best-of-breed Python and JavaScript libraries. Python provides accessible, powerful, and mature libraries for scraping, cleaning, and processing data. And while JavaScript is the best language when it comes to programming web visualizations, its data processing abilities can't compare with Python's. Together, these two languages are a perfect complement for creating a modern web-visualization toolchain. This book gets you started. You'll learn how to: Obtain data you need programmatically, using scraping tools or web APIs: Requests, Scrapy, Beautiful Soup Clean and process data using Python's heavyweight data processing libraries within the NumPy ecosystem: Jupyter notebooks with pandas+Matplotlib+Seaborn Deliver the data to a browser with static files or by using Flask, the lightweight Python server, and a RESTful API Pick up enough web development skills (HTML, CSS, JS) to get your visualized data on the web Use the data you've mined and refined to create web charts and visualizations with Plotly, D3, Leaflet, and other libraries
Python Data Science Handbook
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms