Author: Andrew Gelman
Publisher: Cambridge University Press
ISBN: 9780521686891
Category : Mathematics
Languages : en
Pages : 654
Book Description
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Data Analysis Using Regression and Multilevel/Hierarchical Models
Author: Andrew Gelman
Publisher: Cambridge University Press
ISBN: 1139460935
Category : Mathematics
Languages : en
Pages : 7
Book Description
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
Publisher: Cambridge University Press
ISBN: 1139460935
Category : Mathematics
Languages : en
Pages : 7
Book Description
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
Teaching Statistics
Author: Andrew Gelman
Publisher: OUP Oxford
ISBN: 0191606995
Category : Mathematics
Languages : en
Pages : 353
Book Description
Students in the sciences, economics, psychology, social sciences, and medicine take introductory statistics. Statistics is increasingly offered at the high school level as well. However, statistics can be notoriously difficult to teach as it is seen by many students as difficult and boring, if not irrelevant to their subject of choice. To help dispel these misconceptions, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, examples and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and combines chapters such as, 'First week of class', with exercises to break the ice and get students talking; then 'Descriptive statistics' , collecting and displaying data; then follows the traditional topics - linear regression, data collection, probability and inference. Part II gives tips on what does and what doesn't work in class: how to set up effective demonstrations and examples, how to encourage students to participate in class and work effectively in group projects. A sample course plan is provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics and sampling.
Publisher: OUP Oxford
ISBN: 0191606995
Category : Mathematics
Languages : en
Pages : 353
Book Description
Students in the sciences, economics, psychology, social sciences, and medicine take introductory statistics. Statistics is increasingly offered at the high school level as well. However, statistics can be notoriously difficult to teach as it is seen by many students as difficult and boring, if not irrelevant to their subject of choice. To help dispel these misconceptions, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, examples and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and combines chapters such as, 'First week of class', with exercises to break the ice and get students talking; then 'Descriptive statistics' , collecting and displaying data; then follows the traditional topics - linear regression, data collection, probability and inference. Part II gives tips on what does and what doesn't work in class: how to set up effective demonstrations and examples, how to encourage students to participate in class and work effectively in group projects. A sample course plan is provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics and sampling.
Multilevel Analysis
Author: Tom A. B. Snijders
Publisher: SAGE
ISBN: 9780761958901
Category : Mathematics
Languages : en
Pages : 282
Book Description
Multilevel analysis covers all the main methods, techniques and issues for carrying out multilevel modeling and analysis. The approach is applied, and less mathematical than many other textbooks.
Publisher: SAGE
ISBN: 9780761958901
Category : Mathematics
Languages : en
Pages : 282
Book Description
Multilevel analysis covers all the main methods, techniques and issues for carrying out multilevel modeling and analysis. The approach is applied, and less mathematical than many other textbooks.
Hierarchical Linear Modeling
Author: G. David Garson
Publisher: SAGE
ISBN: 1412998859
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Publisher: SAGE
ISBN: 1412998859
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Bayesian Data Analysis, Third Edition
Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Hierarchical Linear Models
Author: Anthony S. Bryk
Publisher: SAGE Publications, Incorporated
ISBN:
Category : Mathematics
Languages : en
Pages : 294
Book Description
Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
Publisher: SAGE Publications, Incorporated
ISBN:
Category : Mathematics
Languages : en
Pages : 294
Book Description
Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
Multilevel Modeling Using R
Author: W. Holmes Finch
Publisher: CRC Press
ISBN: 1351062247
Category : Mathematics
Languages : en
Pages : 208
Book Description
Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.
Publisher: CRC Press
ISBN: 1351062247
Category : Mathematics
Languages : en
Pages : 208
Book Description
Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.