Perturbation Techniques in Mathematics, Engineering and Physics

Perturbation Techniques in Mathematics, Engineering and Physics PDF Author: Richard Ernest Bellman
Publisher: Courier Corporation
ISBN: 9780486432588
Category : Science
Languages : en
Pages : 146

Book Description
Graduate students receive a stimulating introduction to analytical approximation techniques for solving differential equations in this text, which introduces scientifically significant problems and indicates useful solutions. 1966 edition.

Perturbation Methods in Applied Mathematics

Perturbation Methods in Applied Mathematics PDF Author: J. Kevorkian
Publisher: Springer Science & Business Media
ISBN: 1475742134
Category : Mathematics
Languages : en
Pages : 569

Book Description
This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B.

Introduction to Perturbation Methods

Introduction to Perturbation Methods PDF Author: Mark H. Holmes
Publisher: Springer Science & Business Media
ISBN: 1461253470
Category : Mathematics
Languages : en
Pages : 344

Book Description
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.

Perturbation Methods

Perturbation Methods PDF Author: E. J. Hinch
Publisher: Cambridge University Press
ISBN: 9780521378970
Category : Mathematics
Languages : en
Pages : 178

Book Description
A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.

Perturbation Methods, Bifurcation Theory and Computer Algebra

Perturbation Methods, Bifurcation Theory and Computer Algebra PDF Author: Richard H. Rand
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254

Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Perturbations

Perturbations PDF Author: James A. Murdock
Publisher: SIAM
ISBN: 9781611971095
Category : Mathematics
Languages : en
Pages : 358

Book Description
Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.

Multiple Scale and Singular Perturbation Methods

Multiple Scale and Singular Perturbation Methods PDF Author: J.K. Kevorkian
Publisher: Springer Science & Business Media
ISBN: 1461239680
Category : Mathematics
Languages : en
Pages : 642

Book Description
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.

Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I PDF Author: Carl M. Bender
Publisher: Springer Science & Business Media
ISBN: 1475730691
Category : Mathematics
Languages : en
Pages : 605

Book Description
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.

Random Perturbation Methods with Applications in Science and Engineering

Random Perturbation Methods with Applications in Science and Engineering PDF Author: Anatoli V. Skorokhod
Publisher: Springer Science & Business Media
ISBN: 0387224467
Category : Mathematics
Languages : en
Pages : 500

Book Description
This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Singular Perturbation Theory

Singular Perturbation Theory PDF Author: R.S. Johnson
Publisher: Springer Science & Business Media
ISBN: 0387232176
Category : Technology & Engineering
Languages : en
Pages : 305

Book Description
The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.