Author: Gerald B. Folland
Publisher: John Wiley & Sons
ISBN: 1118626397
Category : Mathematics
Languages : en
Pages : 368
Book Description
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
Principles of Mathematical Analysis
Author: Walter Rudin
Publisher: McGraw-Hill Publishing Company
ISBN: 9780070856134
Category : Mathematics
Languages : en
Pages : 342
Book Description
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Publisher: McGraw-Hill Publishing Company
ISBN: 9780070856134
Category : Mathematics
Languages : en
Pages : 342
Book Description
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Functional Analysis
Author: Walter Rudin
Publisher: McGraw-Hill Companies
ISBN:
Category : Mathematics
Languages : en
Pages : 420
Book Description
This classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Publisher: McGraw-Hill Companies
ISBN:
Category : Mathematics
Languages : en
Pages : 420
Book Description
This classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Elementary Classical Analysis
Author: Jerrold E. Marsden
Publisher: Macmillan
ISBN: 9780716721055
Category : Mathematics
Languages : en
Pages : 760
Book Description
Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Publisher: Macmillan
ISBN: 9780716721055
Category : Mathematics
Languages : en
Pages : 760
Book Description
Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.
Analysis I
Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
The Fundamentals of Mathematical Analysis
Author: G. M. Fikhtengol'ts
Publisher: Elsevier
ISBN: 1483154130
Category : Mathematics
Languages : en
Pages : 541
Book Description
The Fundamentals of Mathematical Analysis, Volume 2 is a continuation of the discussion of the fundamentals of mathematical analysis, specifically on the subject of curvilinear and surface integrals, with emphasis on the difference between the curvilinear and surface ""integrals of first kind"" and ""integrals of second kind."" The discussions in the book start with an introduction to the elementary concepts of series of numbers, infinite sequences and their limits, and the continuity of the sum of a series. The definition of improper integrals of unbounded functions and that of uniform convergence of integrals are explained. Curvilinear integrals of the first and second kinds are analyzed mathematically. The book then notes the application of surface integrals, through a parametric representation of a surface, and the calculation of the mass of a solid. The text also highlights that Green's formula, which connects a double integral over a plane domain with curvilinear integral along the contour of the domain, has an analogue in Ostrogradski's formula. The periodic values and harmonic analysis such as that found in the operation of a steam engine are analyzed. The volume ends with a note of further developments in mathematical analysis, which is a chronological presentation of important milestones in the history of analysis. The book is an ideal reference for mathematicians, students, and professors of calculus and advanced mathematics.
Publisher: Elsevier
ISBN: 1483154130
Category : Mathematics
Languages : en
Pages : 541
Book Description
The Fundamentals of Mathematical Analysis, Volume 2 is a continuation of the discussion of the fundamentals of mathematical analysis, specifically on the subject of curvilinear and surface integrals, with emphasis on the difference between the curvilinear and surface ""integrals of first kind"" and ""integrals of second kind."" The discussions in the book start with an introduction to the elementary concepts of series of numbers, infinite sequences and their limits, and the continuity of the sum of a series. The definition of improper integrals of unbounded functions and that of uniform convergence of integrals are explained. Curvilinear integrals of the first and second kinds are analyzed mathematically. The book then notes the application of surface integrals, through a parametric representation of a surface, and the calculation of the mass of a solid. The text also highlights that Green's formula, which connects a double integral over a plane domain with curvilinear integral along the contour of the domain, has an analogue in Ostrogradski's formula. The periodic values and harmonic analysis such as that found in the operation of a steam engine are analyzed. The volume ends with a note of further developments in mathematical analysis, which is a chronological presentation of important milestones in the history of analysis. The book is an ideal reference for mathematicians, students, and professors of calculus and advanced mathematics.
Winning Solutions
Author: Edward Lozansky
Publisher: Springer Science & Business Media
ISBN: 1461240344
Category : Mathematics
Languages : en
Pages : 253
Book Description
This book provides the mathematical tools and problem-solving experience needed to successfully compete in high-level problem solving competitions. Each section presents important background information and then provides a variety of worked examples and exercises to help bridge the gap between what the reader may already know and what is required for high-level competitions. Answers or sketches of the solutions are given for all exercises.
Publisher: Springer Science & Business Media
ISBN: 1461240344
Category : Mathematics
Languages : en
Pages : 253
Book Description
This book provides the mathematical tools and problem-solving experience needed to successfully compete in high-level problem solving competitions. Each section presents important background information and then provides a variety of worked examples and exercises to help bridge the gap between what the reader may already know and what is required for high-level competitions. Answers or sketches of the solutions are given for all exercises.
The Principles of Mathematics
Author: Bertrand Russell
Publisher: W. W. Norton & Company
ISBN: 9780393314045
Category : Mathematics
Languages : en
Pages : 580
Book Description
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.
Publisher: W. W. Norton & Company
ISBN: 9780393314045
Category : Mathematics
Languages : en
Pages : 580
Book Description
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.
Real Mathematical Analysis
Author: Charles Chapman Pugh
Publisher: Springer Science & Business Media
ISBN: 0387216847
Category : Mathematics
Languages : en
Pages : 445
Book Description
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Publisher: Springer Science & Business Media
ISBN: 0387216847
Category : Mathematics
Languages : en
Pages : 445
Book Description
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.