Big Data in Education

Big Data in Education PDF Author: Ben Williamson
Publisher: SAGE
ISBN: 1526416328
Category : Education
Languages : en
Pages : 281

Book Description
Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!

Big Data in Education: Pedagogy and Research

Big Data in Education: Pedagogy and Research PDF Author: Theodosia Prodromou
Publisher: Springer Nature
ISBN: 3030768414
Category : Education
Languages : en
Pages : 249

Book Description
This book discusses how Big Data could be implemented in educational settings and research, using empirical data and suggesting both best practices and areas in which to invest future research and development. It also explores: 1) the use of learning analytics to improve learning and teaching; 2) the opportunities and challenges of learning analytics in education. As Big Data becomes a common part of the fabric of our world, education and research are challenged to use this data to improve educational and research systems, and also are tasked with teaching coming generations to deal with Big Data both effectively and ethically. The Big Data era is changing the data landscape for statistical analysis, the ways in which data is captured and presented, and the necessary level of statistical literacy to analyse and interpret data for future decision making. The advent of Big Data accentuates the need to enable citizens to develop statistical skills, thinking and reasoning needed for representing, integrating and exploring complex information. This book offers guidance to researchers who are seeking suitable topics to explore. It presents research into the skills needed by data practitioners (data analysts, data managers, statisticians, and data consumers, academics), and provides insights into the statistical skills, thinking and reasoning needed by educators and researchers in the future to work with Big Data. This book serves as a concise reference for policymakers, who must make critical decisions regarding funding and applications.

Big Data on Campus

Big Data on Campus PDF Author: Karen L. Webber
Publisher: Johns Hopkins University Press
ISBN: 1421439034
Category : Education
Languages : en
Pages : 337

Book Description
How data-informed decision making can make colleges and universities more effective institutions. The continuing importance of data analytics is not lost on higher education leaders, who face a multitude of challenges, including increasing operating costs, dwindling state support, limits to tuition increases, and increased competition from the for-profit sector. To navigate these challenges, savvy leaders must leverage data to make sound decisions. In Big Data on Campus, leading data analytics experts and higher ed leaders show the role that analytics can play in the better administration of colleges and universities. Aimed at senior administrative leaders, practitioners of institutional research, technology professionals, and graduate students in higher education, the book opens with a conceptual discussion of the roles that data analytics can play in higher education administration. Subsequent chapters address recent developments in technology, the rapid accumulation of data assets, organizational maturity in building analytical capabilities, and methodological advancements in developing predictive and prescriptive analytics. Each chapter includes a literature review of the research and application of analytics developments in their respective functional areas, a discussion of industry trends, examples of the application of data analytics in their decision process, and other related issues that readers may wish to consider in their own organizational environment to find opportunities for building robust data analytics capabilities. Using a series of focused discussions and case studies, Big Data on Campus helps readers understand how analytics can support major organizational functions in higher education, including admission decisions, retention and enrollment management, student life and engagement, academic and career advising, student learning and assessment, and academic program planning. The final section of the book addresses major issues and human factors involved in using analytics to support decision making; the ethical, cultural, and managerial implications of its use; the role of university leaders in promoting analytics in decision making; and the need for a strong campus community to embrace the analytics revolution. Contributors: Rana Glasgal, J. Michael Gower, Tom Gutman, Brian P. Hinote, Braden J. Hosch, Aditya Johri, Christine M. Keller, Carrie Klein, Jaime Lester, Carrie Hancock Marcinkevage, Gail B. Marsh, Susan M. Menditto, Jillian N. Morn, Valentina Nestor, Cathy O'Bryan, Huzefa Rangwala, Timothy Renick, Charles Tegen, Rachit Thariani, Chris Tompkins, Lindsay K. Wayt, Karen L. Webber, Henry Y. Zheng, Ying Zhou

Big Data and Learning Analytics in Higher Education

Big Data and Learning Analytics in Higher Education PDF Author: Ben Kei Daniel
Publisher: Springer
ISBN: 3319065203
Category : Education
Languages : en
Pages : 287

Book Description
​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.

Learning With Big Data

Learning With Big Data PDF Author: Viktor Mayer-Schönberger
Publisher: HarperCollins
ISBN: 0544355504
Category : Education
Languages : en
Pages : 63

Book Description
Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.

Advancing the Power of Learning Analytics and Big Data in Education

Advancing the Power of Learning Analytics and Big Data in Education PDF Author: Azevedo, Ana
Publisher: IGI Global
ISBN: 1799871045
Category : Education
Languages : en
Pages : 296

Book Description
The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments.

Data Science in Education Using R

Data Science in Education Using R PDF Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331

Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Big Data-Enabled Nursing

Big Data-Enabled Nursing PDF Author: Connie W. Delaney
Publisher: Springer
ISBN: 3319533002
Category : Medical
Languages : en
Pages : 504

Book Description
Historically, nursing, in all of its missions of research/scholarship, education and practice, has not had access to large patient databases. Nursing consequently adopted qualitative methodologies with small sample sizes, clinical trials and lab research. Historically, large data methods were limited to traditional biostatical analyses. In the United States, large payer data has been amassed and structures/organizations have been created to welcome scientists to explore these large data to advance knowledge discovery. Health systems electronic health records (EHRs) have now matured to generate massive databases with longitudinal trending. This text reflects how the learning health system infrastructure is maturing, and being advanced by health information exchanges (HIEs) with multiple organizations blending their data, or enabling distributed computing. It educates the readers on the evolution of knowledge discovery methods that span qualitative as well as quantitative data mining, including the expanse of data visualization capacities, are enabling sophisticated discovery. New opportunities for nursing and call for new skills in research methodologies are being further enabled by new partnerships spanning all sectors.

Data Mining and Learning Analytics

Data Mining and Learning Analytics PDF Author: Samira ElAtia
Publisher: John Wiley & Sons
ISBN: 1118998219
Category : Computers
Languages : en
Pages : 351

Book Description
Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Radical Solutions and Learning Analytics

Radical Solutions and Learning Analytics PDF Author: Daniel Burgos
Publisher: Springer Nature
ISBN: 981154526X
Category : Education
Languages : en
Pages : 233

Book Description
Learning Analytics become the key for Personalised Learning and Teaching thanks to the storage, categorisation and smart retrieval of Big Data. Thousands of user data can be tracked online via Learning Management Systems, instant messaging channels, social networks and other ways of communication. Always with the explicit authorisation from the end user, being a student, a teacher, a manager or a persona in a different role, an instructional designer can design a way to produce a practical dashboard that helps him improve that very user’s performance, interaction, motivation or just grading. This book provides a thorough approach on how education, as such, from teaching to learning through management, is improved by a smart analysis of available data, making visible and useful behaviours, predictions and patterns that are hinder to the regular eye without the process of massive data.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.