Visible Thinking in the K–8 Mathematics Classroom

Visible Thinking in the K–8 Mathematics Classroom PDF Author: Ted H. Hull
Publisher: Corwin Press
ISBN: 1452269408
Category : Education
Languages : en
Pages : 185

Book Description
"This book is a crucial tool for meeting NCTM mathematical content and process standards. Through the useful problems and strategies presented within, teachers will definitely know how well their students will comprehend. If comprehension is an issue in your class, this book is a must have!" —Therese Gessler Rodammer, Math Coach Thomas W. Dixon Elementary School, Staunton, VA Seeing is believing with this interactive approach to math instruction Do you ever wish your students could read each other′s thoughts? Now they can—and so can you! Veteran mathematics educators Ted Hull, Don Balka, and Ruth Harbin Miles explain why making students′ thought processes visible is the key to effective mathematics instruction. Their newest book contains numerous grade-specific sample problems and instructional strategies for teaching essential concepts such as number sense, fractions, and estimation. Among the many benefits of visible thinking are: Interactive student-to-student learning Increased class participation Development of metacognitive thinking and problem-solving skills Helpful features include vignettes, relevant word problems, classroom scenarios, sample problems, lesson adaptations, and easy-to-follow examples of each strategy in action. The authors also explain how students can demonstrate their thinking using calculators and online tools. The final chapter outlines steps math leaders can take to implement visible thinking and maximize mathematics comprehension for all students.

Teaching Mathematics in the Visible Learning Classroom, Grades 6-8

Teaching Mathematics in the Visible Learning Classroom, Grades 6-8 PDF Author: John Almarode
Publisher: Corwin Press
ISBN: 154433317X
Category : Education
Languages : en
Pages : 154

Book Description
Select the right task, at the right time, for the right phase of learning It could happen in the morning during homework review. Or perhaps it happens when listening to students as they struggle through a challenging problem. Or maybe even after class, when planning a lesson. At some point, the question arises: How do I influence students′ learning—what’s going to generate that light bulb "aha" moment of understanding? In this sequel to the megawatt best seller Visible Learning for Mathematics, John Almarode, Douglas Fisher, Nancy Frey, John Hattie, and Kateri Thunder help you answer that question by showing how Visible Learning strategies look in action in the mathematics classroom. Walk in the shoes of middle school teachers as they engage in the 200 micro-decisions-per-minute needed to balance the strategies, tasks, and assessments seminal to high-impact mathematics instruction. Using grade-leveled examples and a decision-making matrix, you’ll learn to Articulate clear learning intentions and success criteria at surface, deep, and transfer levels Employ evidence to guide students along the path of becoming metacognitive and self-directed mathematics achievers Use formative assessments to track what students understand, what they don’t, and why Select the right task for the conceptual, procedural, or application emphasis you want, ensuring the task is for the right phase of learning Adjust the difficulty and complexity of any task to meet the needs of all learners It’s not only what works, but when. Exemplary lessons, video clips, and online resources help you leverage the most effective teaching practices at the most effective time to meet the surface, deep, and transfer learning needs of every student.

Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12 PDF Author: Peter Liljedahl
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454

Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.

Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12 PDF Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209

Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.

Making Thinking Visible

Making Thinking Visible PDF Author: Ron Ritchhart
Publisher: John Wiley & Sons
ISBN: 1118015010
Category : Education
Languages : en
Pages : 320

Book Description
A proven program for enhancing students' thinking and comprehension abilities Visible Thinking is a research-based approach to teaching thinking, begun at Harvard's Project Zero, that develops students' thinking dispositions, while at the same time deepening their understanding of the topics they study. Rather than a set of fixed lessons, Visible Thinking is a varied collection of practices, including thinking routines?small sets of questions or a short sequence of steps?as well as the documentation of student thinking. Using this process thinking becomes visible as the students' different viewpoints are expressed, documented, discussed and reflected upon. Helps direct student thinking and structure classroom discussion Can be applied with students at all grade levels and in all content areas Includes easy-to-implement classroom strategies The book also comes with a DVD of video clips featuring Visible Thinking in practice in different classrooms.

Visible Learning for Science, Grades K-12

Visible Learning for Science, Grades K-12 PDF Author: John Almarode
Publisher: Corwin Press
ISBN: 1506394191
Category : Education
Languages : en
Pages : 131

Book Description
In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.

Teaching Math at a Distance, Grades K-12

Teaching Math at a Distance, Grades K-12 PDF Author: Theresa Wills
Publisher: Corwin Press
ISBN: 1071837125
Category : Education
Languages : en
Pages : 194

Book Description
Make Rich Math Instruction Come to Life Online In an age when distance learning has become part of the "new normal," educators know that rich remote math teaching involves more than direct instruction, online videos, and endless practice problems on virtual worksheets. Using both personal experience and those of teachers in real K-12 online classrooms, distance learning mathematics veteran Theresa Wills translates all we know about research-based, equitable, rigorous face-to-face mathematics instruction into an online venue. This powerful guide equips math teachers to: Build students’ agency, identity, and strong math communities Promote mathematical thinking, collaboration, and discourse Incorporate rich mathematics tasks and assign meaningful homework and practice Facilitate engaging online math instruction using virtual manipulatives and other concrete learning tools Recognize and address equity and inclusion challenges associated with distance learning Assess mathematics learning from a distance With examples across the grades, links to tutorials and templates, and space to reflect and plan, Teaching Math at a Distance offers the support, clarity, and inspiration needed to guide teachers through teaching math remotely without sacrificing deep learning and academic growth.

Teaching Mathematics in the Visible Learning Classroom, Grades K-2

Teaching Mathematics in the Visible Learning Classroom, Grades K-2 PDF Author: John Almarode
Publisher: Corwin Press
ISBN: 1544333285
Category : Education
Languages : en
Pages : 288

Book Description
Select the right task, at the right time, for the right phase of learning How can you best help K–2 students to become assessment-capable visible learners in mathematics? This book answers that question by showing Visible Learning strategies in action in high-impact mathematics instruction. Walk in the shoes of K–2 teachers as they mix and match strategies, tasks, and assessments, demonstrating that it’s not only what works, but when. A decision-making matrix and grade-leveled examples help you leverage the most effective teaching practices at the most effective time to meet the surface, deep, and transfer learning needs of every young student.

Visible Learning in Early Childhood

Visible Learning in Early Childhood PDF Author: Kateri Thunder
Publisher: Corwin Press
ISBN: 1071825704
Category : Education
Languages : en
Pages : 280

Book Description
Make learning visible in the early years Early childhood is a uniquely sensitive time, when young learners are rapidly developing across multiple domains, including language and literacy, mathematics, and motor skills. Knowing which teaching strategies work best and when can have a significant impact on a child’s development and future success. Visible Learning in Early Childhood investigates the critical years between ages 3 and 6 and, backed by evidence from the Visible Learning® research, explores seven core strategies for learning success: working together as evaluators, setting high expectations, measuring learning with explicit success criteria, establishing developmentally appropriate levels of learning, viewing mistakes as opportunities, continually seeking feedback, and balancing surface, deep, and transfer learning. The authors unpack the symbiotic relationship between these seven tenets through Authentic examples of diverse learners and settings Voices of master teachers from the US, UK, and Australia Multiple assessment and differentiation strategies Multidisciplinary approaches depicting mathematics, literacy, art and music, social-emotional learning, and more Using the Visible Learning research, teachers partner with children to encourage high expectations, developmentally appropriate practices, the right level of challenge, and a focus on explicit success criteria. Get started today and watch your young learners thrive!

Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12 PDF Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362974
Category : Education
Languages : en
Pages : 305

Book Description
Rich tasks, collaborative work, number talks, problem-based learning, direct instruction…with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in “visible” learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.