Python for the Life Sciences

Python for the Life Sciences PDF Author: Alexander Lancaster
Publisher: Apress
ISBN: 1484245237
Category : Computers
Languages : en
Pages : 396

Book Description
Treat yourself to a lively, intuitive, and easy-to-follow introduction to computer programming in Python. The book was written specifically for biologists with little or no prior experience of writing code - with the goal of giving them not only a foundation in Python programming, but also the confidence and inspiration to start using Python in their own research. Virtually all of the examples in the book are drawn from across a wide spectrum of life science research, from simple biochemical calculations and sequence analysis, to modeling the dynamic interactions of genes and proteins in cells, or the drift of genes in an evolving population. Best of all, Python for the Life Sciences shows you how to implement all of these projects in Python, one of the most popular programming languages for scientific computing. If you are a life scientist interested in learning Python to jump-start your research, this is the book for you. What You'll Learn Write Python scripts to automate your lab calculations Search for important motifs in genome sequences Use object-oriented programming with Python Study mining interaction network data for patterns Review dynamic modeling of biochemical switches Who This Book Is For Life scientists with little or no programming experience, including undergraduate and graduate students, postdoctoral researchers in academia and industry, medical professionals, and teachers/lecturers. “A comprehensive introduction to using Python for computational biology... A lovely book with humor and perspective” -- John Novembre, Associate Professor of Human Genetics, University of Chicago and MacArthur Fellow “Fun, entertaining, witty and darn useful. A magical portal to the big data revolution” -- Sandro Santagata, Assistant Professor in Pathology, Harvard Medical School “Alex and Gordon’s enthusiasm for Python is contagious” -- Glenys Thomson Professor of Integrative Biology, University of California, Berkeley

Machine Learning in Biotechnology and Life Sciences

Machine Learning in Biotechnology and Life Sciences PDF Author: Saleh Alkhalifa
Publisher: Packt Publishing Ltd
ISBN: 1801815674
Category : Mathematics
Languages : en
Pages : 408

Book Description
Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.

Managing Your Biological Data with Python

Managing Your Biological Data with Python PDF Author: Allegra Via
Publisher: CRC Press
ISBN: 1439880948
Category : Computers
Languages : en
Pages : 560

Book Description
Take Control of Your Data and Use Python with ConfidenceRequiring no prior programming experience, Managing Your Biological Data with Python empowers biologists and other life scientists to work with biological data on their own using the Python language. The book teaches them not only how to program but also how to manage their data. It shows how

Computational Life Sciences

Computational Life Sciences PDF Author: Jens Dörpinghaus
Publisher: Springer Nature
ISBN: 303108411X
Category : Computers
Languages : en
Pages : 593

Book Description
This book broadly covers the given spectrum of disciplines in Computational Life Sciences, transforming it into a strong helping hand for teachers, students, practitioners and researchers. In Life Sciences, problem-solving and data analysis often depend on biological expertise combined with technical skills in order to generate, manage and efficiently analyse big data. These technical skills can easily be enhanced by good theoretical foundations, developed from well-chosen practical examples and inspiring new strategies. This is the innovative approach of Computational Life Sciences-Data Engineering and Data Mining for Life Sciences: We present basic concepts, advanced topics and emerging technologies, introduce algorithm design and programming principles, address data mining and knowledge discovery as well as applications arising from real projects. Chapters are largely independent and often flanked by illustrative examples and practical advise.

Python Programming for Biology

Python Programming for Biology PDF Author: Tim J. Stevens
Publisher: Cambridge University Press
ISBN: 1316194140
Category : Science
Languages : en
Pages :

Book Description
Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.

Computational Thinking for Life Scientists

Computational Thinking for Life Scientists PDF Author: Benny Chor
Publisher: Cambridge University Press
ISBN: 1107197244
Category : Computers
Languages : en
Pages : 219

Book Description
Computational thinking is increasingly gaining importance in modern biology, due to the unprecedented scale at which data is nowadays produced. Bridging the cultural gap between the biological and computational sciences, this book serves as an accessible introduction to computational concepts for students in the life sciences. It focuses on teaching algorithmic and logical thinking, rather than just the use of existing bioinformatics tools or programming. Topics are presented from a biological point of view, to demonstrate how computational approaches can be used to solve problems in biology such as biological image processing, regulatory networks, and sequence analysis. The book contains a range of pedagogical features to aid understanding, including real-world examples, in-text exercises, end-of-chapter problems, colour-coded Python code, and 'code explained' boxes. User-friendly throughout, Computational Thinking for Life Scientists promotes the thinking skills and self-efficacy required for any modern biologist to adopt computational approaches in their research with confidence.

Issues in Life Sciences—Zoology: 2013 Edition

Issues in Life Sciences—Zoology: 2013 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1490107487
Category : Science
Languages : en
Pages : 1201

Book Description
Issues in Life Sciences—Zoology / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Emu Research. The editors have built Issues in Life Sciences—Zoology: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Emu Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Life Sciences—Zoology / 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Mathematical Modeling the Life Sciences

Mathematical Modeling the Life Sciences PDF Author: N. G. Cogan
Publisher: CRC Press
ISBN: 1000646955
Category : Mathematics
Languages : en
Pages : 209

Book Description
The purpose of this unique textbook is to bridge the gap between the need for numerical solutions to modeling techniques through computer simulations to develop skill in employing sensitivity analysis to biological and life sciences applications. The underpinning mathematics is minimalized. The focus is on the consequences, implementation, and application. Historical context motivates the models. An understanding of the earliest models provides insight into more complicated ones. While the text avoids getting mired in the details of numerical analysis, it demonstrates how to use numerical methods and provides core codes that can be readily altered to fit a variety of situations. Numerical scripts in both Python and MATLAB® are included. Python is compiled in Jupyter Notebook to aid classroom use. Additionally, codes are organized and available online. One of the most important skills requiring the use of computer simulations is sensitivity analysis. Sensitivity analysis is increasingly used in biomathematics. There are numerous pitfalls to using sensitivity analysis and therefore a need for exposure to worked examples in order to successfully transfer their use from mathematicians to biologists. The interconnections between mathematics and the life sciences have an extensive history. This book offers a new approach to using mathematics to model applications using computers, to employ numerical methods, and takes students a step further into the realm of sensitivity analysis. With some guidance and practice, the reader will have a new and incredibly powerful tool to use. https://www.math.fsu.edu/~cogan/Book/Codes/Codes.html
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.