Bad Data Handbook

Bad Data Handbook PDF Author: Q. Ethan McCallum
Publisher: "O'Reilly Media, Inc."
ISBN: 1449321887
Category : Computers
Languages : en
Pages : 265

Book Description
"Mapping the world of data problems"--Cover.

Bad Data Handbook

Bad Data Handbook PDF Author: Q. Ethan McCallum
Publisher: "O'Reilly Media, Inc."
ISBN: 1449324975
Category : Computers
Languages : en
Pages : 265

Book Description
What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you’ll discover how to: Test drive your data to see if it’s ready for analysis Work spreadsheet data into a usable form Handle encoding problems that lurk in text data Develop a successful web-scraping effort Use NLP tools to reveal the real sentiment of online reviews Address cloud computing issues that can impact your analysis effort Avoid policies that create data analysis roadblocks Take a systematic approach to data quality analysis

Fundamentals of Data Visualization

Fundamentals of Data Visualization PDF Author: Claus O. Wilke
Publisher: O'Reilly Media
ISBN: 1492031054
Category : Computers
Languages : en
Pages : 390

Book Description
Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story

The Handbook for Bad Days

The Handbook for Bad Days PDF Author: Eveline Helmink
Publisher: Tiller Press
ISBN: 1982152761
Category : Self-Help
Languages : en
Pages : 240

Book Description
Keep your head held high even on the bad days with 70 mindful self-care strategies to find happiness. In a time when social media encourages us to constantly highlight how great we’re doing and how #Blessed life is, there seems to be little room for the inevitable truth: in every life, there are days that are NOT great. Yet decades in the self-help world have taught Eveline Helmink—editor-in-chief of Happinez magazine and a self-titled cheerleader for failure and discomfort—that true emotional growth comes from realizing that it’s often on our worst days when we learn the most about what empowers, strengthens, and revitalizes us—and yes, brings us happiness. In The Handbook for Bad Days, Helmink teaches you how to take advantage of bad days as moments for self-discovery and emotional understanding. Her compassionate, no-bullshit approach encourages you to detox from the social media world and rethink your coping strategies, exploring topics such as, -The benefits of a good cry -Why, sometimes, it’s okay to give up -Why a fuzzy pink cardigan and some Celine Dion is just as good as a Sanskrit mantra The Handbook for Bad Days is the ultimate guide for anyone who strives to be present, not perfect. Perfect for fans of Glennon Doyle, Elizabeth Lesser, and Krista Tippet, The Handbook for Bad Days is a call to face our worst days with courage and intentionality.

The Crime Data Handbook

The Crime Data Handbook PDF Author: Laura Huey
Publisher: Policy Press
ISBN: 1529232058
Category : Social Science
Languages : en
Pages : 352

Book Description
Crime research has grown substantially over the past decade, with a rise in evidence-informed approaches to criminal justice, statistics-driven decision-making and predictive analytics. The fuel that has driven this growth is data – and one of its most pressing challenges is the lack of research on the use and interpretation of data sources. This accessible, engaging book closes that gap for researchers, practitioners and students. International researchers and crime analysts discuss the strengths, perils and opportunities of the data sources and tools now available and their best use in informing sound public policy and criminal justice practice.

Big Data Architect’s Handbook

Big Data Architect’s Handbook PDF Author: Syed Muhammad Fahad Akhtar
Publisher: Packt Publishing Ltd
ISBN: 1788836383
Category : Computers
Languages : en
Pages : 476

Book Description
A comprehensive end-to-end guide that gives hands-on practice in big data and Artificial Intelligence Key Features Learn to build and run a big data application with sample code Explore examples to implement activities that a big data architect performs Use Machine Learning and AI for structured and unstructured data Book Description The big data architects are the “masters” of data, and hold high value in today’s market. Handling big data, be it of good or bad quality, is not an easy task. The prime job for any big data architect is to build an end-to-end big data solution that integrates data from different sources and analyzes it to find useful, hidden insights. Big Data Architect’s Handbook takes you through developing a complete, end-to-end big data pipeline, which will lay the foundation for you and provide the necessary knowledge required to be an architect in big data. Right from understanding the design considerations to implementing a solid, efficient, and scalable data pipeline, this book walks you through all the essential aspects of big data. It also gives you an overview of how you can leverage the power of various big data tools such as Apache Hadoop and ElasticSearch in order to bring them together and build an efficient big data solution. By the end of this book, you will be able to build your own design system which integrates, maintains, visualizes, and monitors your data. In addition, you will have a smooth design flow in each process, putting insights in action. What you will learn Learn Hadoop Ecosystem and Apache projects Understand, compare NoSQL database and essential software architecture Cloud infrastructure design considerations for big data Explore application scenario of big data tools for daily activities Learn to analyze and visualize results to uncover valuable insights Build and run a big data application with sample code from end to end Apply Machine Learning and AI to perform big data intelligence Practice the daily activities performed by big data architects Who this book is for Big Data Architect’s Handbook is for you if you are an aspiring data professional, developer, or IT enthusiast who aims to be an all-round architect in big data. This book is your one-stop solution to enhance your knowledge and carry out easy to complex activities required to become a big data architect.

Python Data Science Handbook

Python Data Science Handbook PDF Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609

Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Plastics Institute of America Plastics Engineering, Manufacturing & Data Handbook

Plastics Institute of America Plastics Engineering, Manufacturing & Data Handbook PDF Author: D.V. Rosato
Publisher: Springer Science & Business Media
ISBN: 9780792373162
Category : Science
Languages : en
Pages : 864

Book Description
This book provides a simplified, practical, and innovative approach to understanding the design and manufacture of plastic products in the World of Plastics. The concise and comprehensive information defines and focuses on past, current, and future technical trends. The handbook reviews over 20,000 different subjects; and contains over 1,000 figures and more than 400 tables. Various plastic materials and their behavior patterns are reviewed. Examples are provided of different plastic products and relating to them critical factors that range from meeting performance requirements in different environments to reducing costs and targeting for zero defects. This book provides the reader with useful pertinent information readily available as summarized in the Table of Contents, List of References and the Index.

Network Analysis Literacy

Network Analysis Literacy PDF Author: Katharina A. Zweig
Publisher: Springer Science & Business Media
ISBN: 3709107415
Category : Computers
Languages : en
Pages : 546

Book Description
This book presents a perspective of network analysis as a tool to find and quantify significant structures in the interaction patterns between different types of entities. Moreover, network analysis provides the basic means to relate these structures to properties of the entities. It has proven itself to be useful for the analysis of biological and social networks, but also for networks describing complex systems in economy, psychology, geography, and various other fields. Today, network analysis packages in the open-source platform R and other open-source software projects enable scientists from all fields to quickly apply network analytic methods to their data sets. Altogether, these applications offer such a wealth of network analytic methods that it can be overwhelming for someone just entering this field. This book provides a road map through this jungle of network analytic methods, offers advice on how to pick the best method for a given network analytic project, and how to avoid common pitfalls. It introduces the methods which are most often used to analyze complex networks, e.g., different global network measures, types of random graph models, centrality indices, and networks motifs. In addition to introducing these methods, the central focus is on network analysis literacy – the competence to decide when to use which of these methods for which type of question. Furthermore, the book intends to increase the reader's competence to read original literature on network analysis by providing a glossary and intensive translation of formal notation and mathematical symbols in everyday speech. Different aspects of network analysis literacy – understanding formal definitions, programming tasks, or the analysis of structural measures and their interpretation – are deepened in various exercises with provided solutions. This text is an excellent, if not the best starting point for all scientists who want to harness the power of network analysis for their field of expertise.

Customer Data Integration

Customer Data Integration PDF Author: Jill Dyché
Publisher: John Wiley & Sons
ISBN: 1118046471
Category : Business & Economics
Languages : en
Pages : 358

Book Description
"Customers are the heart of any business. But we can't succeed if we develop only one talk addressed to the 'average customer.' Instead we must know each customer and build our individual engagements with that knowledge. If Customer Relationship Management (CRM) is going to work, it calls for skills in Customer Data Integration (CDI). This is the best book that I have seen on the subject. Jill Dyché is to be complimented for her thoroughness in interviewing executives and presenting CDI." -Philip Kotler, S. C. Johnson Distinguished Professor of International Marketing Kellogg School of Management, Northwestern University "In this world of killer competition, hanging on to existing customers is critical to survival. Jill Dyché's new book makes that job a lot easier than it has been." -Jack Trout, author, Differentiate or Die "Jill and Evan have not only written the definitive work on Customer Data Integration, they've made the business case for it. This book offers sound advice to business people in search of innovative ways to bring data together about customers-their most important asset-while at the same time giving IT some practical tips for implementing CDI and MDM the right way." -Wayne Eckerson, The Data Warehousing Institute author of Performance Dashboards: Measuring, Monitoring, and Managing Your Business Whatever business you're in, you're ultimately in the customer business. No matter what your product, customers pay the bills. But the strategic importance of customer relationships hasn't brought companies much closer to a single, authoritative view of their customers. Written from both business and technicalperspectives, Customer Data Integration shows companies how to deliver an accurate, holistic, and long-term understanding of their customers through CDI.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.