Author: John B Conway
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416
Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Functional Analysis
Author: George Bachman
Publisher: Courier Corporation
ISBN: 0486136558
Category : Mathematics
Languages : en
Pages : 548
Book Description
Text covers introduction to inner-product spaces, normed, metric spaces, and topological spaces; complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and many other related subjects. 1966 edition.
Publisher: Courier Corporation
ISBN: 0486136558
Category : Mathematics
Languages : en
Pages : 548
Book Description
Text covers introduction to inner-product spaces, normed, metric spaces, and topological spaces; complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and many other related subjects. 1966 edition.
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Linear and Nonlinear Functional Analysis with Applications
Author: Philippe G. Ciarlet
Publisher: SIAM
ISBN: 1611972582
Category : Mathematics
Languages : en
Pages : 847
Book Description
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
Publisher: SIAM
ISBN: 1611972582
Category : Mathematics
Languages : en
Pages : 847
Book Description
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Complex Analysis
Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Publisher: Princeton University Press
ISBN: 1400831156
Category : Mathematics
Languages : en
Pages : 398
Book Description
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Elements of the Theory of Functions and Functional Analysis [Two Volumes in One]
Author: A. N. Kolmogorov
Publisher: Martino Fine Books
ISBN: 9781614273042
Category : Mathematics
Languages : en
Pages : 280
Book Description
2012 Reprint of Volumes One and Two, 1957-1961. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. A. N. Kolmogorov was a Soviet mathematician, preeminent in the 20th century, who advanced various scientific fields, among them probability theory, topology, logic, turbulence, classical mechanics and computational complexity. Later in life Kolmogorov changed his research interests to the area of turbulence, where his publications beginning in 1941 had a significant influence on the field. In classical mechanics, he is best known for the Kolmogorov-Arnold-Moser theorem. In 1957 he solved a particular interpretation of Hilbert's thirteenth problem (a joint work with his student V. I. Arnold). He was a founder of algorithmic complexity theory, often referred to as Kolmogorov complexity theory, which he began to develop around this time. Based on the authors' courses and lectures, this two-part advanced-level text is now available in a single volume. Topics include metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, and more. Each section contains exercises. Lists of symbols, definitions, and theorems.
Publisher: Martino Fine Books
ISBN: 9781614273042
Category : Mathematics
Languages : en
Pages : 280
Book Description
2012 Reprint of Volumes One and Two, 1957-1961. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. A. N. Kolmogorov was a Soviet mathematician, preeminent in the 20th century, who advanced various scientific fields, among them probability theory, topology, logic, turbulence, classical mechanics and computational complexity. Later in life Kolmogorov changed his research interests to the area of turbulence, where his publications beginning in 1941 had a significant influence on the field. In classical mechanics, he is best known for the Kolmogorov-Arnold-Moser theorem. In 1957 he solved a particular interpretation of Hilbert's thirteenth problem (a joint work with his student V. I. Arnold). He was a founder of algorithmic complexity theory, often referred to as Kolmogorov complexity theory, which he began to develop around this time. Based on the authors' courses and lectures, this two-part advanced-level text is now available in a single volume. Topics include metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, and more. Each section contains exercises. Lists of symbols, definitions, and theorems.
A Friendly Approach to Functional Analysis
Author: A. Sasane
Publisher: Essential Textbooks in Mathema
ISBN: 9781786343338
Category : Mathematics
Languages : en
Pages : 379
Book Description
This book constitutes a concise introductory course on Functional Analysis for students who have studied calculus and linear algebra. The topics covered are Banach spaces, continuous linear transformations, Frechet derivative, geometry of Hilbert spaces,
Publisher: Essential Textbooks in Mathema
ISBN: 9781786343338
Category : Mathematics
Languages : en
Pages : 379
Book Description
This book constitutes a concise introductory course on Functional Analysis for students who have studied calculus and linear algebra. The topics covered are Banach spaces, continuous linear transformations, Frechet derivative, geometry of Hilbert spaces,