Author: Richard Swinbank
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 433
Book Description
Limitless Analytics with Azure Synapse
Author: Prashant Kumar Mishra
Publisher: Packt Publishing Ltd
ISBN: 1800206976
Category : Computers
Languages : en
Pages : 392
Book Description
Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key FeaturesLearn to ingest, prepare, manage, and serve data for immediate business requirementsBring enterprise data warehousing and big data analytics together to gain insights from your dataDevelop end-to-end analytics solutions using Azure SynapseBook Description Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learnExplore the necessary considerations for data ingestion and orchestration while building analytical pipelinesUnderstand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflowsQuery data using various coding languages on Azure SynapseFocus on Synapse SQL and Synapse SparkManage and monitor resource utilization and query activity in Azure SynapseConnect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse StudioCreate and manage IP firewall rules in Azure SynapseWho this book is for This book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.
Publisher: Packt Publishing Ltd
ISBN: 1800206976
Category : Computers
Languages : en
Pages : 392
Book Description
Leverage the Azure analytics platform's key analytics services to deliver unmatched intelligence for your data Key FeaturesLearn to ingest, prepare, manage, and serve data for immediate business requirementsBring enterprise data warehousing and big data analytics together to gain insights from your dataDevelop end-to-end analytics solutions using Azure SynapseBook Description Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data analytics together. With this book, you'll learn how to discover insights from your data effectively using this platform. The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can be used to improve business intelligence and machine learning capabilities. Next, you'll go on to choose and set up the correct environment for your business problem. You'll also learn a variety of ways to ingest data from various sources and orchestrate the data using transformation techniques offered by Azure Synapse. Later, you'll explore how to handle both relational and non-relational data using the SQL language. As you progress, you'll perform real-time streaming and execute data analysis operations on your data using various languages, before going on to apply ML techniques to derive accurate and granular insights from data. Finally, you'll discover how to protect sensitive data in real time by using security and privacy features. By the end of this Azure book, you'll be able to build end-to-end analytics solutions while focusing on data prep, data management, data warehousing, and AI tasks. What you will learnExplore the necessary considerations for data ingestion and orchestration while building analytical pipelinesUnderstand pipelines and activities in Synapse pipelines and use them to construct end-to-end data-driven workflowsQuery data using various coding languages on Azure SynapseFocus on Synapse SQL and Synapse SparkManage and monitor resource utilization and query activity in Azure SynapseConnect Power BI workspaces with Azure Synapse and create or modify reports directly from Synapse StudioCreate and manage IP firewall rules in Azure SynapseWho this book is for This book is for data architects, data scientists, data engineers, and business analysts who are looking to get up and running with the Azure Synapse Analytics platform. Basic knowledge of data warehousing will be beneficial to help you understand the concepts covered in this book more effectively.
Microsoft Azure Data Solutions - An Introduction
Author: Daniel A. Seara
Publisher: Microsoft Press
ISBN: 0137252528
Category : Computers
Languages : en
Pages : 634
Book Description
Discover and apply the Azure platform's most powerful data solutions Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. Now, three pioneering Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide you through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare you to succeed, even if you have no cloud data experience. Three leading experts in Microsoft Azure Data Solutions show how to: Master essential concepts of data storage and processing in cloud environments Handle the changing responsibilities of data engineers moving to the cloud Get started with Azure data storage accounts and other data facilities Walk through implementing relational and non-relational data stores in Azure Secure data using the least-permissions principle, Azure Active Directory, role-based access control, and other methods Develop efficient Azure batch processing and streaming solutions Monitor Azure SQL databases, blob storage, data lakes, Azure Synapse Analytics, and Cosmos DB Optimize Azure data solutions by solving problems with storage, management, and service interactions About This Book For data engineers, systems engineers, IT managers, developers, database administrators, cloud architects, and other IT professionals Requires little or no knowledge about Azure tools and services for data analysis
Publisher: Microsoft Press
ISBN: 0137252528
Category : Computers
Languages : en
Pages : 634
Book Description
Discover and apply the Azure platform's most powerful data solutions Cloud technologies are advancing at an accelerating pace, supplanting traditional relational and data warehouse storage solutions with novel, high-value alternatives. Now, three pioneering Azure Data consultants offer an expert introduction to the relational, non-relational, and data warehouse solutions offered by the Azure platform. Drawing on their extensive experience helping organizations get more value from the Microsoft Data Platform, the authors guide you through decision-making, implementation, operations, security, and more. Throughout, step-by-step tutorials and hands-on exercises prepare you to succeed, even if you have no cloud data experience. Three leading experts in Microsoft Azure Data Solutions show how to: Master essential concepts of data storage and processing in cloud environments Handle the changing responsibilities of data engineers moving to the cloud Get started with Azure data storage accounts and other data facilities Walk through implementing relational and non-relational data stores in Azure Secure data using the least-permissions principle, Azure Active Directory, role-based access control, and other methods Develop efficient Azure batch processing and streaming solutions Monitor Azure SQL databases, blob storage, data lakes, Azure Synapse Analytics, and Cosmos DB Optimize Azure data solutions by solving problems with storage, management, and service interactions About This Book For data engineers, systems engineers, IT managers, developers, database administrators, cloud architects, and other IT professionals Requires little or no knowledge about Azure tools and services for data analysis
Beginning Apache Spark Using Azure Databricks
Author: Robert Ilijason
Publisher: Apress
ISBN: 1484257812
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.
Publisher: Apress
ISBN: 1484257812
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Analyze vast amounts of data in record time using Apache Spark with Databricks in the Cloud. Learn the fundamentals, and more, of running analytics on large clusters in Azure and AWS, using Apache Spark with Databricks on top. Discover how to squeeze the most value out of your data at a mere fraction of what classical analytics solutions cost, while at the same time getting the results you need, incrementally faster. This book explains how the confluence of these pivotal technologies gives you enormous power, and cheaply, when it comes to huge datasets. You will begin by learning how cloud infrastructure makes it possible to scale your code to large amounts of processing units, without having to pay for the machinery in advance. From there you will learn how Apache Spark, an open source framework, can enable all those CPUs for data analytics use. Finally, you will see how services such as Databricks provide the power of Apache Spark, without you having to know anything about configuring hardware or software. By removing the need for expensive experts and hardware, your resources can instead be allocated to actually finding business value in the data. This book guides you through some advanced topics such as analytics in the cloud, data lakes, data ingestion, architecture, machine learning, and tools, including Apache Spark, Apache Hadoop, Apache Hive, Python, and SQL. Valuable exercises help reinforce what you have learned. What You Will Learn Discover the value of big data analytics that leverage the power of the cloudGet started with Databricks using SQL and Python in either Microsoft Azure or AWSUnderstand the underlying technology, and how the cloud and Apache Spark fit into the bigger picture See how these tools are used in the real world Run basic analytics, including machine learning, on billions of rows at a fraction of a cost or free Who This Book Is For Data engineers, data scientists, and cloud architects who want or need to run advanced analytics in the cloud. It is assumed that the reader has data experience, but perhaps minimal exposure to Apache Spark and Azure Databricks. The book is also recommended for people who want to get started in the analytics field, as it provides a strong foundation.
Azure Data Factory Cookbook
Author: Dmitry Anoshin
Publisher: Packt Publishing Ltd
ISBN: 1800561024
Category : Computers
Languages : en
Pages : 383
Book Description
Solve real-world data problems and create data-driven workflows for easy data movement and processing at scale with Azure Data Factory Key FeaturesLearn how to load and transform data from various sources, both on-premises and on cloudUse Azure Data Factory’s visual environment to build and manage hybrid ETL pipelinesDiscover how to prepare, transform, process, and enrich data to generate key insightsBook Description Azure Data Factory (ADF) is a modern data integration tool available on Microsoft Azure. This Azure Data Factory Cookbook helps you get up and running by showing you how to create and execute your first job in ADF. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines. This book will help you to discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage, which are frequently used for big data analytics. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premise infrastructure with cloud-native tools to get relevant business insights. As you advance, you’ll be able to integrate the most commonly used Azure Services into ADF and understand how Azure services can be useful in designing ETL pipelines. The book will take you through the common errors that you may encounter while working with ADF and show you how to use the Azure portal to monitor pipelines. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF as the main ETL and orchestration tool for your data warehouse or data platform projects. What you will learnCreate an orchestration and transformation job in ADFDevelop, execute, and monitor data flows using Azure SynapseCreate big data pipelines using Azure Data Lake and ADFBuild a machine learning app with Apache Spark and ADFMigrate on-premises SSIS jobs to ADFIntegrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure FunctionsRun big data compute jobs within HDInsight and Azure DatabricksCopy data from AWS S3 and Google Cloud Storage to Azure Storage using ADF's built-in connectorsWho this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is expected.
Publisher: Packt Publishing Ltd
ISBN: 1800561024
Category : Computers
Languages : en
Pages : 383
Book Description
Solve real-world data problems and create data-driven workflows for easy data movement and processing at scale with Azure Data Factory Key FeaturesLearn how to load and transform data from various sources, both on-premises and on cloudUse Azure Data Factory’s visual environment to build and manage hybrid ETL pipelinesDiscover how to prepare, transform, process, and enrich data to generate key insightsBook Description Azure Data Factory (ADF) is a modern data integration tool available on Microsoft Azure. This Azure Data Factory Cookbook helps you get up and running by showing you how to create and execute your first job in ADF. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines. This book will help you to discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage, which are frequently used for big data analytics. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premise infrastructure with cloud-native tools to get relevant business insights. As you advance, you’ll be able to integrate the most commonly used Azure Services into ADF and understand how Azure services can be useful in designing ETL pipelines. The book will take you through the common errors that you may encounter while working with ADF and show you how to use the Azure portal to monitor pipelines. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF as the main ETL and orchestration tool for your data warehouse or data platform projects. What you will learnCreate an orchestration and transformation job in ADFDevelop, execute, and monitor data flows using Azure SynapseCreate big data pipelines using Azure Data Lake and ADFBuild a machine learning app with Apache Spark and ADFMigrate on-premises SSIS jobs to ADFIntegrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure FunctionsRun big data compute jobs within HDInsight and Azure DatabricksCopy data from AWS S3 and Google Cloud Storage to Azure Storage using ADF's built-in connectorsWho this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is expected.
Exam Ref DP-900 Microsoft Azure Data Fundamentals
Author: Daniel A. Seara
Publisher: Microsoft Press
ISBN: 0137252102
Category : Computers
Languages : en
Pages : 623
Book Description
Prepare for Microsoft Exam DP-900 Demonstrate your real-world foundational knowledge of core data concepts and how they are implemented using Microsoft Azure data services. Designed for business users, functional consultants, and other professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified: Azure Data Fundamentals level. Focus on the expertise measured by these objectives: Describe core data concepts Describe how to work with relational data on Azure Describe how to work with non-relational data on Azure Describe an analytics workload on Azure This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you have foundational knowledge of core data concepts and their implementation with Microsoft Azure data services, and are beginning to work with data in the cloud About the Exam Exam DP-900 focuses on core knowledge for describing fundamental database concepts and skills for cloud environments; cloud data services within Azure; cloud data roles, tasks, and responsibilities; Azure relational and non-relational data offerings, provisioning, and deployment; querying Azure relational databases; working with Azure non-relational data stores; building modern Azure data analytics solutions; and exploring Azure Data Factory, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Data Fundamentals certification, demonstrating your understanding of the core capabilities of Azure data services and their use with relational data, non-relational data, and analytics workloads. See full details at: www.microsoft.com/learn
Publisher: Microsoft Press
ISBN: 0137252102
Category : Computers
Languages : en
Pages : 623
Book Description
Prepare for Microsoft Exam DP-900 Demonstrate your real-world foundational knowledge of core data concepts and how they are implemented using Microsoft Azure data services. Designed for business users, functional consultants, and other professionals, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified: Azure Data Fundamentals level. Focus on the expertise measured by these objectives: Describe core data concepts Describe how to work with relational data on Azure Describe how to work with non-relational data on Azure Describe an analytics workload on Azure This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you have foundational knowledge of core data concepts and their implementation with Microsoft Azure data services, and are beginning to work with data in the cloud About the Exam Exam DP-900 focuses on core knowledge for describing fundamental database concepts and skills for cloud environments; cloud data services within Azure; cloud data roles, tasks, and responsibilities; Azure relational and non-relational data offerings, provisioning, and deployment; querying Azure relational databases; working with Azure non-relational data stores; building modern Azure data analytics solutions; and exploring Azure Data Factory, Azure Synapse Analytics, Azure Databricks, and Azure HDInsight. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Data Fundamentals certification, demonstrating your understanding of the core capabilities of Azure data services and their use with relational data, non-relational data, and analytics workloads. See full details at: www.microsoft.com/learn
Beginning Azure Cognitive Services
Author: Alicia Moniz
Publisher:
ISBN: 9781484271773
Category :
Languages : en
Pages : 0
Book Description
Get started with Azure Cognitive Services and its APIs that expose machine learning as a service. This book introduces the suite of Azure Cognitive Services and helps you take advantage of the proven machine learning algorithms that have been developed by experts and made available through Cognitive Services, easily integrating those algorithms into your own applications without having to develop the algorithms from scratch. The book also shows you how to use the algorithms provided by Cognitive Services to accelerate data analysis and development within your organization. The authors begin by introducing the tools and describing the steps needed to invoke libraries to analyze structured and unstructured text, speech, and pictures, and you will learn to create interactive chatbots using the Cognitive Services libraries. Each chapter contains the information you need to implement artificial intelligence (AI) via Azure Cognitive Services in your personal and professional projects. The book also covers ethical considerations that are becoming increasingly of concern when using AI to drive decision making. You will be introduced to tools such as FairLearn and InterpretML that can help you detect bias and understand the results your models are generating. You will learn to: Invoke the Cognitive Services APIs from a variety of languages and apps Understand common design architectures for AI solutions in Azure Decrease discrimination and bias when creating an AI-driven solution Execute the examples within the book and learn how to extend those examples Implement best practices for leveraging the Vision, Speech, and Language parts of the suite Test Cognitive Services APIs via the Azure portal and using the Postman API tool Execute AI from low-code and no-code platforms like Logic Apps and Microsoft's Power Platform.
Publisher:
ISBN: 9781484271773
Category :
Languages : en
Pages : 0
Book Description
Get started with Azure Cognitive Services and its APIs that expose machine learning as a service. This book introduces the suite of Azure Cognitive Services and helps you take advantage of the proven machine learning algorithms that have been developed by experts and made available through Cognitive Services, easily integrating those algorithms into your own applications without having to develop the algorithms from scratch. The book also shows you how to use the algorithms provided by Cognitive Services to accelerate data analysis and development within your organization. The authors begin by introducing the tools and describing the steps needed to invoke libraries to analyze structured and unstructured text, speech, and pictures, and you will learn to create interactive chatbots using the Cognitive Services libraries. Each chapter contains the information you need to implement artificial intelligence (AI) via Azure Cognitive Services in your personal and professional projects. The book also covers ethical considerations that are becoming increasingly of concern when using AI to drive decision making. You will be introduced to tools such as FairLearn and InterpretML that can help you detect bias and understand the results your models are generating. You will learn to: Invoke the Cognitive Services APIs from a variety of languages and apps Understand common design architectures for AI solutions in Azure Decrease discrimination and bias when creating an AI-driven solution Execute the examples within the book and learn how to extend those examples Implement best practices for leveraging the Vision, Speech, and Language parts of the suite Test Cognitive Services APIs via the Azure portal and using the Postman API tool Execute AI from low-code and no-code platforms like Logic Apps and Microsoft's Power Platform.
Cloud Analytics with Microsoft Azure
Author: Has Altaiar
Publisher: Packt Publishing Ltd
ISBN: 1800200285
Category : Computers
Languages : en
Pages : 185
Book Description
Learn to extract actionable insights from your big data in real time using a range of Microsoft Azure features Key FeaturesUpdated with the latest features and new additions to Microsoft AzureMaster the fundamentals of cloud analytics using AzureLearn to use Azure Synapse Analytics (formerly known as Azure SQL Data Warehouse) to derive real-time customer insightsBook Description Cloud Analytics with Microsoft Azure serves as a comprehensive guide for big data analysis and processing using a range of Microsoft Azure features. This book covers everything you need to build your own data warehouse and learn numerous techniques to gain useful insights by analyzing big data The book begins by introducing you to the power of data with big data analytics, the Internet of Things (IoT), machine learning, artificial intelligence, and DataOps. You will learn about cloud-scale analytics and the services Microsoft Azure offers to empower businesses to discover insights. You will also be introduced to the new features and functionalities added to the modern data warehouse. Finally, you will look at two real-world business use cases to demonstrate high-level solutions using Microsoft Azure. The aim of these use cases will be to illustrate how real-time data can be analyzed in Azure to derive meaningful insights and make business decisions. You will learn to build an end-to-end analytics pipeline on the cloud with machine learning and deep learning concepts. By the end of this book, you will be proficient in analyzing large amounts of data with Azure and using it effectively to benefit your organization. What you will learnExplore the concepts of modern data warehouses and data pipelinesDiscover unique design considerations while applying a cloud analytics solutionDesign an end-to-end analytics pipeline on the cloudDifferentiate between structured, semi-structured, and unstructured dataChoose a cloud-based service for your data analytics solutionsUse Azure services to ingest, store, and analyze data of any scaleWho this book is for This book is designed to benefit software engineers, Azure developers, cloud consultants, and anyone who is keen to learn the process of deriving business insights from huge amounts of data using Azure. Though not necessary, a basic understanding of data analytics concepts such as data streaming, data types, the machine learning life cycle, and Docker containers will help you get the most out of the book.
Publisher: Packt Publishing Ltd
ISBN: 1800200285
Category : Computers
Languages : en
Pages : 185
Book Description
Learn to extract actionable insights from your big data in real time using a range of Microsoft Azure features Key FeaturesUpdated with the latest features and new additions to Microsoft AzureMaster the fundamentals of cloud analytics using AzureLearn to use Azure Synapse Analytics (formerly known as Azure SQL Data Warehouse) to derive real-time customer insightsBook Description Cloud Analytics with Microsoft Azure serves as a comprehensive guide for big data analysis and processing using a range of Microsoft Azure features. This book covers everything you need to build your own data warehouse and learn numerous techniques to gain useful insights by analyzing big data The book begins by introducing you to the power of data with big data analytics, the Internet of Things (IoT), machine learning, artificial intelligence, and DataOps. You will learn about cloud-scale analytics and the services Microsoft Azure offers to empower businesses to discover insights. You will also be introduced to the new features and functionalities added to the modern data warehouse. Finally, you will look at two real-world business use cases to demonstrate high-level solutions using Microsoft Azure. The aim of these use cases will be to illustrate how real-time data can be analyzed in Azure to derive meaningful insights and make business decisions. You will learn to build an end-to-end analytics pipeline on the cloud with machine learning and deep learning concepts. By the end of this book, you will be proficient in analyzing large amounts of data with Azure and using it effectively to benefit your organization. What you will learnExplore the concepts of modern data warehouses and data pipelinesDiscover unique design considerations while applying a cloud analytics solutionDesign an end-to-end analytics pipeline on the cloudDifferentiate between structured, semi-structured, and unstructured dataChoose a cloud-based service for your data analytics solutionsUse Azure services to ingest, store, and analyze data of any scaleWho this book is for This book is designed to benefit software engineers, Azure developers, cloud consultants, and anyone who is keen to learn the process of deriving business insights from huge amounts of data using Azure. Though not necessary, a basic understanding of data analytics concepts such as data streaming, data types, the machine learning life cycle, and Docker containers will help you get the most out of the book.
Data Engineering on Azure
Author: Vlad Riscutia
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Azure Data Engineering Cookbook
Author: Ahmad Osama
Publisher: Packt Publishing Ltd
ISBN: 1800201540
Category : Computers
Languages : en
Pages : 455
Book Description
Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.
Publisher: Packt Publishing Ltd
ISBN: 1800201540
Category : Computers
Languages : en
Pages : 455
Book Description
Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.