Author: Gottlob Frege
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Frege, Dedekind, and Peano on the Foundations of Arithmetic (Routledge Revivals)
Author: Donald Gillies
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Foundations of Arithmetic Differential Geometry
Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Frege
Author: Michael Dummett
Publisher: Harvard University Press
ISBN: 9780674319356
Category : Mathematics
Languages : en
Pages : 364
Book Description
No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.
Publisher: Harvard University Press
ISBN: 9780674319356
Category : Mathematics
Languages : en
Pages : 364
Book Description
No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.
Making Numbers
Author: Rose Griffiths
Publisher:
ISBN: 9780198375616
Category :
Languages : en
Pages : 112
Book Description
Making Numbers shares exemplars of good practice drawing on the latest research on using manipulatives to develop understanding of arithmetic. Focusing initially on the teaching of numbers from 1-12, Making Numbers progresses to 200 and beyond, including ideas for teaching partitioning, arrays, and times tables.
Publisher:
ISBN: 9780198375616
Category :
Languages : en
Pages : 112
Book Description
Making Numbers shares exemplars of good practice drawing on the latest research on using manipulatives to develop understanding of arithmetic. Focusing initially on the teaching of numbers from 1-12, Making Numbers progresses to 200 and beyond, including ideas for teaching partitioning, arrays, and times tables.
Foundations of Analysis
Author: Edmund Landau
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Theories of Interval Arithmetic
Author: Hend Dawood
Publisher: LAP Lambert Academic Publishing
ISBN: 3846501549
Category : Mathematics
Languages : en
Pages : 128
Book Description
Scientists are, all the time, in a struggle with uncertainty which is always a threat to a trustworthy scientific knowledge. A very simple and natural idea, to defeat uncertainty, is that of enclosing uncertain measured values in real closed intervals. On the basis of this idea, interval arithmetic is constructed. The idea of calculating with intervals is not completely new in mathematics: the concept has been known since Archimedes, who used guaranteed lower and upper bounds to compute his constant Pi. Interval arithmetic is now a broad field in which rigorous mathematics is associated with scientific computing. This connection makes it possible to solve uncertainty problems that cannot be efficiently solved by floating-point arithmetic. Today, application areas of interval methods include electrical engineering, control theory, remote sensing, experimental and computational physics, chaotic systems, celestial mechanics, signal processing, computer graphics, robotics, and computer-assisted proofs. The purpose of this book is to be a concise but informative introduction to the theories of interval arithmetic as well as to some of their computational and scientific applications. Editorial Reviews "This new book by Hend Dawood is a fresh introduction to some of the basics of interval computation. It stops short of discussing the more complicated subdivision methods for converging to ranges of values, however it provides a bit of perspective about complex interval arithmetic, constraint intervals, and modal intervals, and it does go into the design of hardware operations for interval arithmetic, which is something still to be done by computer manufacturers." - Ramon E. Moore, (The Founder of Interval Computations) Professor Emeritus of Computer and Information Science, Department of Mathematics, The Ohio State University, Columbus, U.S.A. "A popular math-oriented introduction to interval computations and its applications. This short book contains an explanation of the need for interval computations, a brief history of interval computations, and main interval computation techniques. It also provides an impressive list of main practical applications of interval techniques." - Vladik Kreinovich, (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems) Professor of Computer Science, University of Texas at El Paso, El Paso, Texas, U.S.A. "I am delighted to see one more Egyptian citizen re-entering the field of interval mathematics invented in this very country thousands years ago." - Marek W. Gutowski, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland
Publisher: LAP Lambert Academic Publishing
ISBN: 3846501549
Category : Mathematics
Languages : en
Pages : 128
Book Description
Scientists are, all the time, in a struggle with uncertainty which is always a threat to a trustworthy scientific knowledge. A very simple and natural idea, to defeat uncertainty, is that of enclosing uncertain measured values in real closed intervals. On the basis of this idea, interval arithmetic is constructed. The idea of calculating with intervals is not completely new in mathematics: the concept has been known since Archimedes, who used guaranteed lower and upper bounds to compute his constant Pi. Interval arithmetic is now a broad field in which rigorous mathematics is associated with scientific computing. This connection makes it possible to solve uncertainty problems that cannot be efficiently solved by floating-point arithmetic. Today, application areas of interval methods include electrical engineering, control theory, remote sensing, experimental and computational physics, chaotic systems, celestial mechanics, signal processing, computer graphics, robotics, and computer-assisted proofs. The purpose of this book is to be a concise but informative introduction to the theories of interval arithmetic as well as to some of their computational and scientific applications. Editorial Reviews "This new book by Hend Dawood is a fresh introduction to some of the basics of interval computation. It stops short of discussing the more complicated subdivision methods for converging to ranges of values, however it provides a bit of perspective about complex interval arithmetic, constraint intervals, and modal intervals, and it does go into the design of hardware operations for interval arithmetic, which is something still to be done by computer manufacturers." - Ramon E. Moore, (The Founder of Interval Computations) Professor Emeritus of Computer and Information Science, Department of Mathematics, The Ohio State University, Columbus, U.S.A. "A popular math-oriented introduction to interval computations and its applications. This short book contains an explanation of the need for interval computations, a brief history of interval computations, and main interval computation techniques. It also provides an impressive list of main practical applications of interval techniques." - Vladik Kreinovich, (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems) Professor of Computer Science, University of Texas at El Paso, El Paso, Texas, U.S.A. "I am delighted to see one more Egyptian citizen re-entering the field of interval mathematics invented in this very country thousands years ago." - Marek W. Gutowski, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland
Number Systems and the Foundations of Analysis
Author: Elliott Mendelson
Publisher: Dover Books on Mathematics
ISBN: 9780486457925
Category : Mathematics
Languages : en
Pages : 0
Book Description
Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.
Publisher: Dover Books on Mathematics
ISBN: 9780486457925
Category : Mathematics
Languages : en
Pages : 0
Book Description
Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.