Author: Daniel Fleisch
Publisher: Cambridge University Press
ISBN: 1009098497
Category : Mathematics
Languages : en
Pages : 221
Book Description
Clear explanations and supportive online material develop an intuitive understanding of the meaning and use of Laplace.
A Student's Guide to Fourier Transforms
Author: John Francis James
Publisher: Cambridge University Press
ISBN: 9780521004282
Category : Mathematics
Languages : en
Pages : 156
Book Description
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.
Publisher: Cambridge University Press
ISBN: 9780521004282
Category : Mathematics
Languages : en
Pages : 156
Book Description
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.
Laplace Transforms and Their Applications to Differential Equations
Author: N.W. McLachlan
Publisher: Courier Corporation
ISBN: 0486798232
Category : Mathematics
Languages : en
Pages : 241
Book Description
Classic graduate-level exposition covers theory and applications to ordinary and partial differential equations. Includes derivation of Laplace transforms of various functions, Laplace transform for a finite interval, and more. 1948 edition.
Publisher: Courier Corporation
ISBN: 0486798232
Category : Mathematics
Languages : en
Pages : 241
Book Description
Classic graduate-level exposition covers theory and applications to ordinary and partial differential equations. Includes derivation of Laplace transforms of various functions, Laplace transform for a finite interval, and more. 1948 edition.
A Student's Guide to the Schrödinger Equation
Author: Daniel A. Fleisch
Publisher: Cambridge University Press
ISBN: 1108834736
Category : Mathematics
Languages : en
Pages : 237
Book Description
A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.
Publisher: Cambridge University Press
ISBN: 1108834736
Category : Mathematics
Languages : en
Pages : 237
Book Description
A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.
Fourier and Laplace Transforms
Author:
Publisher: Cambridge University Press
ISBN: 9780521534413
Category : Mathematics
Languages : en
Pages : 468
Book Description
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
Publisher: Cambridge University Press
ISBN: 9780521534413
Category : Mathematics
Languages : en
Pages : 468
Book Description
This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
A Student's Guide to Laplace Transforms
Author: Daniel Fleisch
Publisher: Cambridge University Press
ISBN: 1009115502
Category : Science
Languages : en
Pages : 222
Book Description
The Laplace transform is a useful mathematical tool encountered by students of physics, engineering, and applied mathematics, within a wide variety of important applications in mechanics, electronics, thermodynamics and more. However, students often struggle with the rationale behind these transforms, and the physical meaning of the transform results. Using the same approach that has proven highly popular in his other Student's Guides, Professor Fleisch addresses the topics that his students have found most troublesome; providing a detailed and accessible description of Laplace transforms and how they relate to Fourier and Z-transforms. Written in plain language and including numerous, fully worked examples. The book is accompanied by a website containing a rich set of freely available supporting materials, including interactive solutions for every problem in the text, and a series of podcasts in which the author explains the important concepts, equations, and graphs of every section of the book.
Publisher: Cambridge University Press
ISBN: 1009115502
Category : Science
Languages : en
Pages : 222
Book Description
The Laplace transform is a useful mathematical tool encountered by students of physics, engineering, and applied mathematics, within a wide variety of important applications in mechanics, electronics, thermodynamics and more. However, students often struggle with the rationale behind these transforms, and the physical meaning of the transform results. Using the same approach that has proven highly popular in his other Student's Guides, Professor Fleisch addresses the topics that his students have found most troublesome; providing a detailed and accessible description of Laplace transforms and how they relate to Fourier and Z-transforms. Written in plain language and including numerous, fully worked examples. The book is accompanied by a website containing a rich set of freely available supporting materials, including interactive solutions for every problem in the text, and a series of podcasts in which the author explains the important concepts, equations, and graphs of every section of the book.
A Student's Guide to Maxwell's Equations
Author: Daniel Fleisch
Publisher: Cambridge University Press
ISBN: 1139468472
Category : Science
Languages : en
Pages : 129
Book Description
Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
Publisher: Cambridge University Press
ISBN: 1139468472
Category : Science
Languages : en
Pages : 129
Book Description
Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
A Student's Guide to Laplace Transforms
Author: Daniel Fleisch
Publisher: Cambridge University Press
ISBN: 9781009096294
Category : Science
Languages : en
Pages : 250
Book Description
The Laplace transform is a useful mathematical tool encountered by students of physics, engineering, and applied mathematics, within a wide variety of important applications in mechanics, electronics, thermodynamics and more. However, students often struggle with the rationale behind these transforms, and the physical meaning of the transform results. Using the same approach that has proven highly popular in his other Student's Guides, Professor Fleisch addresses the topics that his students have found most troublesome; providing a detailed and accessible description of Laplace transforms and how they relate to Fourier and Z-transforms. Written in plain language and including numerous, fully worked examples. The book is accompanied by a website containing a rich set of freely available supporting materials, including interactive solutions for every problem in the text, and a series of podcasts in which the author explains the important concepts, equations, and graphs of every section of the book.
Publisher: Cambridge University Press
ISBN: 9781009096294
Category : Science
Languages : en
Pages : 250
Book Description
The Laplace transform is a useful mathematical tool encountered by students of physics, engineering, and applied mathematics, within a wide variety of important applications in mechanics, electronics, thermodynamics and more. However, students often struggle with the rationale behind these transforms, and the physical meaning of the transform results. Using the same approach that has proven highly popular in his other Student's Guides, Professor Fleisch addresses the topics that his students have found most troublesome; providing a detailed and accessible description of Laplace transforms and how they relate to Fourier and Z-transforms. Written in plain language and including numerous, fully worked examples. The book is accompanied by a website containing a rich set of freely available supporting materials, including interactive solutions for every problem in the text, and a series of podcasts in which the author explains the important concepts, equations, and graphs of every section of the book.
A Student's Guide to Fourier Transforms
Author: J. F. James
Publisher: Cambridge University Press
ISBN: 1139493949
Category : Science
Languages : en
Pages : 161
Book Description
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering and applied mathematics. Providing a concise introduction to the theory and practice of Fourier transforms, this book is invaluable to students of physics, electrical and electronic engineering, and computer science. After a brief description of the basic ideas and theorems, the power of the technique is illustrated through applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of Computer Axial Tomography (CAT scanning). The book concludes by discussing digital methods, with particular attention to the Fast Fourier Transform and its implementation. This new edition has been revised to include new and interesting material, such as convolution with a sinusoid, coherence, the Michelson stellar interferometer and the van Cittert–Zernike theorem, Babinet's principle and dipole arrays.
Publisher: Cambridge University Press
ISBN: 1139493949
Category : Science
Languages : en
Pages : 161
Book Description
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering and applied mathematics. Providing a concise introduction to the theory and practice of Fourier transforms, this book is invaluable to students of physics, electrical and electronic engineering, and computer science. After a brief description of the basic ideas and theorems, the power of the technique is illustrated through applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of Computer Axial Tomography (CAT scanning). The book concludes by discussing digital methods, with particular attention to the Fast Fourier Transform and its implementation. This new edition has been revised to include new and interesting material, such as convolution with a sinusoid, coherence, the Michelson stellar interferometer and the van Cittert–Zernike theorem, Babinet's principle and dipole arrays.