Minding the Machines

Minding the Machines PDF Author: Jeremy Adamson
Publisher: John Wiley & Sons
ISBN: 1119785332
Category : Computers
Languages : en
Pages : 240

Book Description
Organize, plan, and build an exceptional data analytics team within your organization In Minding the Machines: Building and Leading Data Science and Analytics Teams, AI and analytics strategy expert Jeremy Adamson delivers an accessible and insightful roadmap to structuring and leading a successful analytics team. The book explores the tasks, strategies, methods, and frameworks necessary for an organization beginning their first foray into the analytics space or one that is rebooting its team for the umpteenth time in search of success. In this book, you’ll discover: A focus on the three pillars of strategy, process, and people and their role in the iterative and ongoing effort of building an analytics team Repeated emphasis on three guiding principles followed by successful analytics teams: start early, go slow, and fully commit The importance of creating clear goals and objectives when creating a new analytics unit in an organization Perfect for executives, managers, team leads, and other business leaders tasked with structuring and leading a successful analytics team, Minding the Machines is also an indispensable resource for data scientists and analysts who seek to better understand how their individual efforts fit into their team’s overall results.

Building Data Science Teams

Building Data Science Teams PDF Author: DJ Patil
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316778
Category : Computers
Languages : en
Pages : 14

Book Description
As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be "data driven." The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.

Becoming a Data Head

Becoming a Data Head PDF Author: Alex J. Gutman
Publisher: John Wiley & Sons
ISBN: 1119741769
Category : Business & Economics
Languages : en
Pages : 272

Book Description
"Turn yourself into a Data Head. You'll become a more valuable employee and make your organization more successful." Thomas H. Davenport, Research Fellow, Author of Competing on Analytics, Big Data @ Work, and The AI Advantage You’ve heard the hype around data—now get the facts. In Becoming a Data Head: How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning, award-winning data scientists Alex Gutman and Jordan Goldmeier pull back the curtain on data science and give you the language and tools necessary to talk and think critically about it. You’ll learn how to: Think statistically and understand the role variation plays in your life and decision making Speak intelligently and ask the right questions about the statistics and results you encounter in the workplace Understand what’s really going on with machine learning, text analytics, deep learning, and artificial intelligence Avoid common pitfalls when working with and interpreting data Becoming a Data Head is a complete guide for data science in the workplace: covering everything from the personalities you’ll work with to the math behind the algorithms. The authors have spent years in data trenches and sought to create a fun, approachable, and eminently readable book. Anyone can become a Data Head—an active participant in data science, statistics, and machine learning. Whether you’re a business professional, engineer, executive, or aspiring data scientist, this book is for you.

Building Analytics Teams

Building Analytics Teams PDF Author: John K. Thompson
Publisher: Packt Publishing Ltd
ISBN: 180020518X
Category : Computers
Languages : en
Pages : 395

Book Description
Master the skills necessary to hire and manage a team of highly skilled individuals to design, build, and implement applications and systems based on advanced analytics and AI Key FeaturesLearn to create an operationally effective advanced analytics team in a corporate environmentSelect and undertake projects that have a high probability of success and deliver the improved top and bottom-line resultsUnderstand how to create relationships with executives, senior managers, peers, and subject matter experts that lead to team collaboration, increased funding, and long-term success for you and your teamBook Description In Building Analytics Teams, John K. Thompson, with his 30+ years of experience and expertise, illustrates the fundamental concepts of building and managing a high-performance analytics team, including what to do, who to hire, projects to undertake, and what to avoid in the journey of building an analytically sound team. The core processes in creating an effective analytics team and the importance of the business decision-making life cycle are explored to help achieve initial and sustainable success. The book demonstrates the various traits of a successful and high-performing analytics team and then delineates the path to achieve this with insights on the mindset, advanced analytics models, and predictions based on data analytics. It also emphasizes the significance of the macro and micro processes required to evolve in response to rapidly changing business needs. The book dives into the methods and practices of managing, developing, and leading an analytics team. Once you've brought the team up to speed, the book explains how to govern executive expectations and select winning projects. By the end of this book, you will have acquired the knowledge to create an effective business analytics team and develop a production environment that delivers ongoing operational improvements for your organization. What you will learnAvoid organizational and technological pitfalls of moving from a defined project to a production environmentEnable team members to focus on higher-value work and tasksBuild Advanced Analytics and Artificial Intelligence (AA&AI) functions in an organizationOutsource certain projects to competent and capable third partiesSupport the operational areas that intend to invest in business intelligence, descriptive statistics, and small-scale predictive analyticsAnalyze the operational area, the processes, the data, and the organizational resistanceWho this book is for This book is for senior executives, senior and junior managers, and those who are working as part of a team that is accountable for designing, building, delivering and ensuring business success through advanced analytics and artificial intelligence systems and applications. At least 5 to 10 years of experience in driving your organization to a higher level of efficiency will be helpful.

Winning with Data Science

Winning with Data Science PDF Author: Howard Steven Friedman
Publisher: Columbia University Press
ISBN: 0231556691
Category : Computers
Languages : en
Pages : 271

Book Description
Whether you are a newly minted MBA or a project manager at a Fortune 500 company, data science will play a major role in your career. Knowing how to communicate effectively with data scientists in order to obtain maximum value from their expertise is essential. This book is a compelling and comprehensive guide to data science, emphasizing its real-world business applications and focusing on how to collaborate productively with data science teams. Taking an engaging narrative approach, Winning with Data Science covers the fundamental concepts without getting bogged down in complex equations or programming languages. It provides clear explanations of key terms, tools, and techniques, illustrated through practical examples. The book follows the stories of Kamala and Steve, two professionals who need to collaborate with data science teams to achieve their business goals. Howard Steven Friedman and Akshay Swaminathan walk readers through each step of managing a data science project, from understanding the different roles on a data science team to identifying the right software. They equip readers with critical questions to ask data analysts, statisticians, data scientists, and other technical experts to avoid wasting time and money. Winning with Data Science is a must-read for anyone who works with data science teams or is interested in the practical side of the subject.

Data Science

Data Science PDF Author: Vijay Kotu
Publisher: Morgan Kaufmann
ISBN: 0128147628
Category : Computers
Languages : en
Pages : 568

Book Description
Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You’ll be able to: Gain the necessary knowledge of different data science techniques to extract value from data. Master the concepts and inner workings of 30 commonly used powerful data science algorithms. Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... Contains fully updated content on data science, including tactics on how to mine business data for information Presents simple explanations for over twenty powerful data science techniques Enables the practical use of data science algorithms without the need for programming Demonstrates processes with practical use cases Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language Describes the commonly used setup options for the open source tool RapidMiner

Human-Centered Data Science

Human-Centered Data Science PDF Author: Cecilia Aragon
Publisher: MIT Press
ISBN: 0262543214
Category : Computers
Languages : en
Pages : 201

Book Description
Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.

Practitioner’s Guide to Data Science

Practitioner’s Guide to Data Science PDF Author: Nasir Ali Mirza
Publisher: BPB Publications
ISBN: 9391392873
Category : Computers
Languages : en
Pages : 273

Book Description
Covers Data Science concepts, processes, and the real-world hands-on use cases. KEY FEATURES ● Covers the journey from a basic programmer to an effective Data Science developer. ● Applied use of Data Science native processes like CRISP-DM and Microsoft TDSP. ● Implementation of MLOps using Microsoft Azure DevOps. DESCRIPTION "How is the Data Science project to be implemented?" has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world's data and how Data Science plays a pivotal role in everything we do. This book explains and implements the entire Data Science lifecycle using well-known data science processes like CRISP-DM and Microsoft TDSP. The book explains the significance of these processes in connection with the high failure rate of Data Science projects. The book helps build a solid foundation in Data Science concepts and related frameworks. It teaches how to implement real-world use cases using data from the HMDA dataset. It explains Azure ML Service architecture, its capabilities, and implementation to the DS team, who will then be prepared to implement MLOps. The book also explains how to use Azure DevOps to make the process repeatable while we're at it. By the end of this book, you will learn strong Python coding skills, gain a firm grasp of concepts such as feature engineering, create insightful visualizations and become acquainted with techniques for building machine learning models. WHAT YOU WILL LEARN ● Organize Data Science projects using CRISP-DM and Microsoft TDSP. ● Learn to acquire and explore data using Python visualizations. ● Get well versed with the implementation of data pre-processing and Feature Engineering. ● Understand algorithm selection, model development, and model evaluation. ● Hands-on with Azure ML Service, its architecture, and capabilities. ● Learn to use Azure ML SDK and MLOps for implementing real-world use cases. WHO THIS BOOK IS FOR This book is intended for programmers who wish to pursue AI/ML development and build a solid conceptual foundation and familiarity with related processes and frameworks. Additionally, this book is an excellent resource for Software Architects and Managers involved in the design and delivery of Data Science-based solutions. TABLE OF CONTENTS 1. Data Science for Business 2. Data Science Project Methodologies and Team Processes 3. Business Understanding and Its Data Landscape 4. Acquire, Explore, and Analyze Data 5. Pre-processing and Preparing Data 6. Developing a Machine Learning Model 7. Lap Around Azure ML Service 8. Deploying and Managing Models

Leading with AI and Analytics

Leading with AI and Analytics PDF Author: Eric T. Anderson
Publisher:
ISBN: 9781638410355
Category : Artificial intelligence
Languages : en
Pages : 41147

Book Description
Data. It's the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what's often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. In this book, you'll find the essential tools to help you: develop a strong data science intuition quotient, lead and scale AI and analytics throughout your organization, move from "best-guess" decision making to evidence-based decisions, and craft strategies and tactics to create real impact.

Data Science Thinking

Data Science Thinking PDF Author: Longbing Cao
Publisher: Springer
ISBN: 9783030069759
Category :
Languages : en
Pages : 412

Book Description
This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. The topics cover an extremely wide spectrum of essential and relevant aspects of data science, spanning its evolution, concepts, thinking, challenges, discipline, and foundation, all the way to industrialization, profession, education, and the vast array of opportunities that data science offers. The book's three parts each detail layers of these different aspects. The book is intended for decision-makers, data managers (e.g., analytics portfolio managers, business analytics managers, chief data analytics officers, chief data scientists, and chief data officers), policy makers, management and decision strategists, research leaders, and educators who are responsible for pursuing new scientific, innovation, and industrial transformation agendas, enterprise strategic planning, a next-generation profession-oriented course development, as well as those who are involved in data science, technology, and economy from an advanced perspective. Research students in data science-related courses and disciplines will find the book useful for positing their innovative scientific journey, planning their unique and promising career, and competing within and being ready for the next generation of science, technology, and economy.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.