Author: Gerhard A. Holzapfel
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 482
Book Description
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Nonlinear Solid Mechanics
Author: Gerhard A. Holzapfel
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 480
Book Description
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 480
Book Description
Providing a modern and comprehensive coverage of continuum mechanics, this volume includes information on "variational principles"--Significant, as this is the only method by which such material is actually utilized in engineering practice.
Nonlinear Continuum Mechanics and Large Inelastic Deformations
Author: Yuriy I. Dimitrienko
Publisher: Springer Science & Business Media
ISBN: 9400700342
Category : Science
Languages : en
Pages : 742
Book Description
The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics – kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.
Publisher: Springer Science & Business Media
ISBN: 9400700342
Category : Science
Languages : en
Pages : 742
Book Description
The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics – kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.
Nonlinear Solid Mechanics
Author: Adnan Ibrahimbegovic
Publisher: Springer Science & Business Media
ISBN: 9048123305
Category : Computers
Languages : en
Pages : 588
Book Description
This book offers a recipe for constructing the numerical models for representing the complex nonlinear behavior of structures and their components, represented as deformable solid bodies. Its appeal extends to those interested in linear problems of mechanics.
Publisher: Springer Science & Business Media
ISBN: 9048123305
Category : Computers
Languages : en
Pages : 588
Book Description
This book offers a recipe for constructing the numerical models for representing the complex nonlinear behavior of structures and their components, represented as deformable solid bodies. Its appeal extends to those interested in linear problems of mechanics.
Continuum Mechanics
Author: A. J. M. Spencer
Publisher: Courier Corporation
ISBN: 0486139476
Category : Science
Languages : en
Pages : 194
Book Description
Undergraduate text offers an analysis of deformation and stress, covers laws of conservation of mass, momentum, and energy, and surveys the formulation of mechanical constitutive equations. 1992 edition.
Publisher: Courier Corporation
ISBN: 0486139476
Category : Science
Languages : en
Pages : 194
Book Description
Undergraduate text offers an analysis of deformation and stress, covers laws of conservation of mass, momentum, and energy, and surveys the formulation of mechanical constitutive equations. 1992 edition.
Nonlinear Finite Elements for Continua and Structures
Author: Ted Belytschko
Publisher: John Wiley & Sons
ISBN: 1118632702
Category : Science
Languages : en
Pages : 834
Book Description
Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.
Publisher: John Wiley & Sons
ISBN: 1118632702
Category : Science
Languages : en
Pages : 834
Book Description
Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.
Cosserat Theories: Shells, Rods and Points
Author: M.B. Rubin
Publisher: Springer Science & Business Media
ISBN: 9401593795
Category : Science
Languages : en
Pages : 496
Book Description
This book presents a unified hierarchical formulation of theories for three-dimensional continua, two-dimensional shells, one-dimensional rods, and zero-dimensional points. It allows readers with varying backgrounds easy access to fundamental understanding of these powerful Cosserat theories.
Publisher: Springer Science & Business Media
ISBN: 9401593795
Category : Science
Languages : en
Pages : 496
Book Description
This book presents a unified hierarchical formulation of theories for three-dimensional continua, two-dimensional shells, one-dimensional rods, and zero-dimensional points. It allows readers with varying backgrounds easy access to fundamental understanding of these powerful Cosserat theories.
Mathematical Modeling in Continuum Mechanics
Author: Roger Temam
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Non-Linear Mechanics of Materials
Author: Jacques Besson
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.
Publisher: Springer Science & Business Media
ISBN: 9048133564
Category : Science
Languages : en
Pages : 433
Book Description
In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.