Author: R. J. Barlow
Publisher: John Wiley & Sons
ISBN: 1118723236
Category : Science
Languages : en
Pages : 232
Book Description
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A.C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Written by a physicist, Statistics is tailored to the needs of physical scientists, containing and explaining all they need to know. It concentrates on parameter estimation, especially the methods of Least Squares and Maximum Likelihood, but other techniques, such as hypothesis testing, Bayesian statistics and non-parametric methods are also included. Intended for reasonably numerate scientists it contains all the basic formulae, their derivations and applications, together with some more advanced ones. Statistics features: * Comprehensive coverage of the essential techniques physical scientists are likely to need. * A wealth of examples, and problems with their answers. * Flexible structure and organisation allows it to be used as a course text and a reference. * A review of the basics, so that little prior knowledge is required.
Statistics for Physical Sciences
Author: Brian Martin
Publisher: Academic Press
ISBN: 0123877601
Category : Mathematics
Languages : en
Pages : 313
Book Description
"Statistics in physical science is principally concerned with the analysis of numerical data, so in Chapter 1 there is a review of what is meant by an experiment, and how the data that it produces are displayed and characterized by a few simple numbers"--
Publisher: Academic Press
ISBN: 0123877601
Category : Mathematics
Languages : en
Pages : 313
Book Description
"Statistics in physical science is principally concerned with the analysis of numerical data, so in Chapter 1 there is a review of what is meant by an experiment, and how the data that it produces are displayed and characterized by a few simple numbers"--
Statistical Data Analysis
Author: Glen Cowan
Publisher: Oxford University Press
ISBN: 0198501560
Category : Mathematics
Languages : en
Pages : 218
Book Description
This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).
Publisher: Oxford University Press
ISBN: 0198501560
Category : Mathematics
Languages : en
Pages : 218
Book Description
This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).
Probability and Statistics in the Physical Sciences
Author: Byron P. Roe
Publisher: Springer Nature
ISBN: 3030536947
Category : Science
Languages : en
Pages : 285
Book Description
This book, now in its third edition, offers a practical guide to the use of probability and statistics in experimental physics that is of value for both advanced undergraduates and graduate students. Focusing on applications and theorems and techniques actually used in experimental research, it includes worked problems with solutions, as well as homework exercises to aid understanding. Suitable for readers with no prior knowledge of statistical techniques, the book comprehensively discusses the topic and features a number of interesting and amusing applications that are often neglected. Providing an introduction to neural net techniques that encompasses deep learning, adversarial neural networks, and boosted decision trees, this new edition includes updated chapters with, for example, additions relating to generating and characteristic functions, Bayes’ theorem, the Feldman-Cousins method, Lagrange multipliers for constraints, estimation of likelihood ratios, and unfolding problems.
Publisher: Springer Nature
ISBN: 3030536947
Category : Science
Languages : en
Pages : 285
Book Description
This book, now in its third edition, offers a practical guide to the use of probability and statistics in experimental physics that is of value for both advanced undergraduates and graduate students. Focusing on applications and theorems and techniques actually used in experimental research, it includes worked problems with solutions, as well as homework exercises to aid understanding. Suitable for readers with no prior knowledge of statistical techniques, the book comprehensively discusses the topic and features a number of interesting and amusing applications that are often neglected. Providing an introduction to neural net techniques that encompasses deep learning, adversarial neural networks, and boosted decision trees, this new edition includes updated chapters with, for example, additions relating to generating and characteristic functions, Bayes’ theorem, the Feldman-Cousins method, Lagrange multipliers for constraints, estimation of likelihood ratios, and unfolding problems.
Using Statistical Methods in Social Science Research
Author: Soleman H. Abu-Bader
Publisher: Oxford University Press
ISBN: 0190685352
Category : Social Science
Languages : en
Pages : 395
Book Description
In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
Publisher: Oxford University Press
ISBN: 0190685352
Category : Social Science
Languages : en
Pages : 395
Book Description
In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
Statistical Research Methods
Author: Roy Sabo
Publisher: Springer Science & Business Media
ISBN: 1461487080
Category : Medical
Languages : en
Pages : 218
Book Description
This textbook will help graduate students in non-statistics disciplines, advanced undergraduate researchers, and research faculty in the health sciences to learn, use and communicate results from many commonly used statistical methods. The material covered, and the manner in which it is presented, describe the entire data analysis process from hypothesis generation to writing the results in a manuscript. Chapters cover, among other topics: one and two-sample proportions, multi-category data, one and two-sample means, analysis of variance, and regression. Throughout the text, the authors explain statistical procedures and concepts using a non-statistical language. This accessible approach is complete with real-world examples and sample write-ups for the Methods and Results sections of scholarly papers. The text also allows for the concurrent use of the programming language R, which is an open-source program created, maintained and updated by the statistical community. R is freely available and easy to download.
Publisher: Springer Science & Business Media
ISBN: 1461487080
Category : Medical
Languages : en
Pages : 218
Book Description
This textbook will help graduate students in non-statistics disciplines, advanced undergraduate researchers, and research faculty in the health sciences to learn, use and communicate results from many commonly used statistical methods. The material covered, and the manner in which it is presented, describe the entire data analysis process from hypothesis generation to writing the results in a manuscript. Chapters cover, among other topics: one and two-sample proportions, multi-category data, one and two-sample means, analysis of variance, and regression. Throughout the text, the authors explain statistical procedures and concepts using a non-statistical language. This accessible approach is complete with real-world examples and sample write-ups for the Methods and Results sections of scholarly papers. The text also allows for the concurrent use of the programming language R, which is an open-source program created, maintained and updated by the statistical community. R is freely available and easy to download.
Statistical Data Analysis for the Physical Sciences
Author: Adrian Bevan
Publisher: Cambridge University Press
ISBN: 1107067596
Category : Science
Languages : en
Pages : 233
Book Description
Data analysis lies at the heart of every experimental science. Providing a modern introduction to statistics, this book is ideal for undergraduates in physics. It introduces the necessary tools required to analyse data from experiments across a range of areas, making it a valuable resource for students. In addition to covering the basic topics, the book also takes in advanced and modern subjects, such as neural networks, decision trees, fitting techniques and issues concerning limit or interval setting. Worked examples and case studies illustrate the techniques presented, and end-of-chapter exercises help test the reader's understanding of the material.
Publisher: Cambridge University Press
ISBN: 1107067596
Category : Science
Languages : en
Pages : 233
Book Description
Data analysis lies at the heart of every experimental science. Providing a modern introduction to statistics, this book is ideal for undergraduates in physics. It introduces the necessary tools required to analyse data from experiments across a range of areas, making it a valuable resource for students. In addition to covering the basic topics, the book also takes in advanced and modern subjects, such as neural networks, decision trees, fitting techniques and issues concerning limit or interval setting. Worked examples and case studies illustrate the techniques presented, and end-of-chapter exercises help test the reader's understanding of the material.
Practical Statistics for Data Scientists
Author: Peter Bruce
Publisher: "O'Reilly Media, Inc."
ISBN: 1491952911
Category : Computers
Languages : en
Pages : 322
Book Description
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Publisher: "O'Reilly Media, Inc."
ISBN: 1491952911
Category : Computers
Languages : en
Pages : 322
Book Description
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Methods and Applications of Statistics in Engineering, Quality Control, and the Physical Sciences
Author: Narayanaswamy Balakrishnan
Publisher: Wiley
ISBN: 9780470405086
Category : Mathematics
Languages : en
Pages : 0
Book Description
Inspired by the Encyclopedia of Statistical Sciences, Second Edition (ESS2e), this volume presents a concise, well-rounded focus on the statistical concepts and applications that are essential for understanding gathered data in the fields of engineering, quality control, and the physical sciences. The book successfully upholds the goals of ESS2e by combining both previously-published and newly developed contributions written by over 100 leading academics, researchers, and practitioner in a comprehensive, approachable format. The result is a succinct reference that unveils modern, cutting-edge approaches to acquiring and analyzing data across diverse subject areas within these three disciplines, including operations research, chemistry, physics, the earth sciences, electrical engineering, and quality assurance. In addition, techniques related to survey methodology, computational statistics, and operations research are discussed, where applicable. Topics of coverage include: optimal and stochastic control, artificial intelligence, quantum mechanics, and fractals.
Publisher: Wiley
ISBN: 9780470405086
Category : Mathematics
Languages : en
Pages : 0
Book Description
Inspired by the Encyclopedia of Statistical Sciences, Second Edition (ESS2e), this volume presents a concise, well-rounded focus on the statistical concepts and applications that are essential for understanding gathered data in the fields of engineering, quality control, and the physical sciences. The book successfully upholds the goals of ESS2e by combining both previously-published and newly developed contributions written by over 100 leading academics, researchers, and practitioner in a comprehensive, approachable format. The result is a succinct reference that unveils modern, cutting-edge approaches to acquiring and analyzing data across diverse subject areas within these three disciplines, including operations research, chemistry, physics, the earth sciences, electrical engineering, and quality assurance. In addition, techniques related to survey methodology, computational statistics, and operations research are discussed, where applicable. Topics of coverage include: optimal and stochastic control, artificial intelligence, quantum mechanics, and fractals.
Quantitative Methods of Data Analysis for the Physical Sciences and Engineering
Author: Douglas G. Martinson
Publisher: Cambridge University Press
ISBN: 1108671454
Category : Science
Languages : en
Pages : 632
Book Description
This book provides thorough and comprehensive coverage of most of the new and important quantitative methods of data analysis for graduate students and practitioners. In recent years, data analysis methods have exploded alongside advanced computing power, and it is critical to understand such methods to get the most out of data, and to extract signal from noise. The book excels in explaining difficult concepts through simple explanations and detailed explanatory illustrations. Most unique is the focus on confidence limits for power spectra and their proper interpretation, something rare or completely missing in other books. Likewise, there is a thorough discussion of how to assess uncertainty via use of Expectancy, and the easy to apply and understand Bootstrap method. The book is written so that descriptions of each method are as self-contained as possible. Many examples are presented to clarify interpretations, as are user tips in highlighted boxes.
Publisher: Cambridge University Press
ISBN: 1108671454
Category : Science
Languages : en
Pages : 632
Book Description
This book provides thorough and comprehensive coverage of most of the new and important quantitative methods of data analysis for graduate students and practitioners. In recent years, data analysis methods have exploded alongside advanced computing power, and it is critical to understand such methods to get the most out of data, and to extract signal from noise. The book excels in explaining difficult concepts through simple explanations and detailed explanatory illustrations. Most unique is the focus on confidence limits for power spectra and their proper interpretation, something rare or completely missing in other books. Likewise, there is a thorough discussion of how to assess uncertainty via use of Expectancy, and the easy to apply and understand Bootstrap method. The book is written so that descriptions of each method are as self-contained as possible. Many examples are presented to clarify interpretations, as are user tips in highlighted boxes.