Author: John Stillwell
Publisher: Princeton University Press
ISBN: 0691171688
Category : Mathematics
Languages : en
Pages : 440
Book Description
An exciting look at the world of elementary mathematics Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.
Elements of Mathematics
Author: Gabor Toth
Publisher: Springer Nature
ISBN: 3030750515
Category : Mathematics
Languages : en
Pages : 534
Book Description
This textbook offers a rigorous presentation of mathematics before the advent of calculus. Fundamental concepts in algebra, geometry, and number theory are developed from the foundations of set theory along an elementary, inquiry-driven path. Thought-provoking examples and challenging problems inspired by mathematical contests motivate the theory, while frequent historical asides reveal the story of how the ideas were originally developed. Beginning with a thorough treatment of the natural numbers via Peano’s axioms, the opening chapters focus on establishing the natural, integral, rational, and real number systems. Plane geometry is introduced via Birkhoff’s axioms of metric geometry, and chapters on polynomials traverse arithmetical operations, roots, and factoring multivariate expressions. An elementary classification of conics is given, followed by an in-depth study of rational expressions. Exponential, logarithmic, and trigonometric functions complete the picture, driven by inequalities that compare them with polynomial and rational functions. Axioms and limits underpin the treatment throughout, offering not only powerful tools, but insights into non-trivial connections between topics. Elements of Mathematics is ideal for students seeking a deep and engaging mathematical challenge based on elementary tools. Whether enhancing the early undergraduate curriculum for high achievers, or constructing a reflective senior capstone, instructors will find ample material for enquiring mathematics majors. No formal prerequisites are assumed beyond high school algebra, making the book ideal for mathematics circles and competition preparation. Readers who are more advanced in their mathematical studies will appreciate the interleaving of ideas and illuminating historical details.
Publisher: Springer Nature
ISBN: 3030750515
Category : Mathematics
Languages : en
Pages : 534
Book Description
This textbook offers a rigorous presentation of mathematics before the advent of calculus. Fundamental concepts in algebra, geometry, and number theory are developed from the foundations of set theory along an elementary, inquiry-driven path. Thought-provoking examples and challenging problems inspired by mathematical contests motivate the theory, while frequent historical asides reveal the story of how the ideas were originally developed. Beginning with a thorough treatment of the natural numbers via Peano’s axioms, the opening chapters focus on establishing the natural, integral, rational, and real number systems. Plane geometry is introduced via Birkhoff’s axioms of metric geometry, and chapters on polynomials traverse arithmetical operations, roots, and factoring multivariate expressions. An elementary classification of conics is given, followed by an in-depth study of rational expressions. Exponential, logarithmic, and trigonometric functions complete the picture, driven by inequalities that compare them with polynomial and rational functions. Axioms and limits underpin the treatment throughout, offering not only powerful tools, but insights into non-trivial connections between topics. Elements of Mathematics is ideal for students seeking a deep and engaging mathematical challenge based on elementary tools. Whether enhancing the early undergraduate curriculum for high achievers, or constructing a reflective senior capstone, instructors will find ample material for enquiring mathematics majors. No formal prerequisites are assumed beyond high school algebra, making the book ideal for mathematics circles and competition preparation. Readers who are more advanced in their mathematical studies will appreciate the interleaving of ideas and illuminating historical details.
Elements of Modern Mathematics
Author: Kenneth O, May
Publisher: Dover Publications
ISBN: 0486836576
Category : Mathematics
Languages : en
Pages : 627
Book Description
An unusually thoughtful and well-constructed introduction to the serious study of mathematics, this book requires no background beyond high school courses in plane geometry and elementary algebra. From that starting point, it is designed to lead readers willing to work through its exercises and problems to the achievement of basic mathematical literacy. The text provides a fundamental orientation in modern mathematics, an essential vocabulary of mathematical terms, and some facility in the use of mathematical concepts and symbols. From there, readers will be equipped to move on to more serious work, and they'll be well on the way to having the tools essential for work in the physical sciences, engineering, and the biological and social sciences. Starting with elementary treatments of algebra, logic, and set theory, the book advances to explorations of plane analytic geometry, relations and functions, numbers, and calculus. Subsequent chapters discuss probability, statistical inference, and abstract mathematical theories. Each section is enhanced with exercises in the text and problems at the end. Answers to the exercises and some of the problems are included at the end of each section.
Publisher: Dover Publications
ISBN: 0486836576
Category : Mathematics
Languages : en
Pages : 627
Book Description
An unusually thoughtful and well-constructed introduction to the serious study of mathematics, this book requires no background beyond high school courses in plane geometry and elementary algebra. From that starting point, it is designed to lead readers willing to work through its exercises and problems to the achievement of basic mathematical literacy. The text provides a fundamental orientation in modern mathematics, an essential vocabulary of mathematical terms, and some facility in the use of mathematical concepts and symbols. From there, readers will be equipped to move on to more serious work, and they'll be well on the way to having the tools essential for work in the physical sciences, engineering, and the biological and social sciences. Starting with elementary treatments of algebra, logic, and set theory, the book advances to explorations of plane analytic geometry, relations and functions, numbers, and calculus. Subsequent chapters discuss probability, statistical inference, and abstract mathematical theories. Each section is enhanced with exercises in the text and problems at the end. Answers to the exercises and some of the problems are included at the end of each section.
Elements of Advanced Mathematics, Third Edition
Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1439898340
Category : Mathematics
Languages : en
Pages : 368
Book Description
For many years, this classroom-tested, best-selling text has guided mathematics students to more advanced studies in topology, abstract algebra, and real analysis. Elements of Advanced Mathematics, Third Edition retains the content and character of previous editions while making the material more up-to-date and significant. This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting edge of modern cryptography and security analysis, the cryptography chapter shows students how mathematics is used in the real world and gives them the impetus for further exploration. This edition also includes more exercises sets in each chapter, expanded treatment of proofs, and new proof techniques. Continuing to bridge computationally oriented mathematics with more theoretically based mathematics, this text provides a path for students to understand the rigor, axiomatics, set theory, and proofs of mathematics. It gives them the background, tools, and skills needed in more advanced courses.
Publisher: CRC Press
ISBN: 1439898340
Category : Mathematics
Languages : en
Pages : 368
Book Description
For many years, this classroom-tested, best-selling text has guided mathematics students to more advanced studies in topology, abstract algebra, and real analysis. Elements of Advanced Mathematics, Third Edition retains the content and character of previous editions while making the material more up-to-date and significant. This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting edge of modern cryptography and security analysis, the cryptography chapter shows students how mathematics is used in the real world and gives them the impetus for further exploration. This edition also includes more exercises sets in each chapter, expanded treatment of proofs, and new proof techniques. Continuing to bridge computationally oriented mathematics with more theoretically based mathematics, this text provides a path for students to understand the rigor, axiomatics, set theory, and proofs of mathematics. It gives them the background, tools, and skills needed in more advanced courses.
Elements of the History of Mathematics
Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 9783540647676
Category : Mathematics
Languages : en
Pages : 316
Book Description
Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.
Publisher: Springer Science & Business Media
ISBN: 9783540647676
Category : Mathematics
Languages : en
Pages : 316
Book Description
Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.
Philosophy of Mathematics and Deductive Structure in Euclid's Elements
Author: Ian Mueller
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Elements of Mathematics for Economics and Finance
Author: Vassilis C. Mavron
Publisher: Springer Science & Business Media
ISBN: 1846285615
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book equips undergraduates with the mathematical skills required for degree courses in economics, finance, management, and business studies. The fundamental ideas are described in the simplest mathematical terms, highlighting threads of common mathematical theory in the various topics. Coverage helps readers become confident and competent in the use of mathematical tools and techniques that can be applied to a range of problems.
Publisher: Springer Science & Business Media
ISBN: 1846285615
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book equips undergraduates with the mathematical skills required for degree courses in economics, finance, management, and business studies. The fundamental ideas are described in the simplest mathematical terms, highlighting threads of common mathematical theory in the various topics. Coverage helps readers become confident and competent in the use of mathematical tools and techniques that can be applied to a range of problems.
Elements of Number Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266
Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266
Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.