Author: Paul D. Allison
Publisher: Pine Forge Press
ISBN: 9780761985334
Category : Mathematics
Languages : en
Pages : 230
Book Description
"Presenting topics in the form of questions and answers, this popular supplemental text offers a brief introduction on multiple regression on a conceptual level. Author Paul D. Allison answers the most essential questions (such as how to read and interpret multiple regression tables and how to critique multiple regression results) in the early chapters, and then tackles the less important ones (for instance, those arising from multicollinearity) in the later chapters."--Pub. desc.
Multiple Regression
Author: Aki Roberts
Publisher: SAGE Publications, Incorporated
ISBN: 1544358857
Category : Social Science
Languages : en
Pages : 280
Book Description
Multiple Regression: A Practical Introduction is a text for an advanced undergraduate or beginning graduate course in statistics for social science and related fields. Also, students preparing for more advanced courses can self-study the text to refresh and solidify their statistical background. Drawing on decades of teaching this material, the authors present the ideas in an approachable and nontechnical manner, with no expectation that readers have more than a standard introductory statistics course as background. Multiple regression asks how a dependent variable is related to, or predicted by, a set of independent variables. The book includes many interesting example analyses and interpretations, along with exercises. Each dataset used for the examples and exercises is small enough for readers to easily grasp the entire dataset and its analysis with respect to the specific statistical techniques covered. A website for the book at https://edge.sagepub.com/roberts1e includes SPSS, Stata, SAS, and R code and commands for each type of analysis or recoding of variables in the book. Solutions to two of the end-of-chapter exercise types are also available for students to practice. The instructor side of the site contains editable PowerPoint slides, other solutions, and a test bank.
Publisher: SAGE Publications, Incorporated
ISBN: 1544358857
Category : Social Science
Languages : en
Pages : 280
Book Description
Multiple Regression: A Practical Introduction is a text for an advanced undergraduate or beginning graduate course in statistics for social science and related fields. Also, students preparing for more advanced courses can self-study the text to refresh and solidify their statistical background. Drawing on decades of teaching this material, the authors present the ideas in an approachable and nontechnical manner, with no expectation that readers have more than a standard introductory statistics course as background. Multiple regression asks how a dependent variable is related to, or predicted by, a set of independent variables. The book includes many interesting example analyses and interpretations, along with exercises. Each dataset used for the examples and exercises is small enough for readers to easily grasp the entire dataset and its analysis with respect to the specific statistical techniques covered. A website for the book at https://edge.sagepub.com/roberts1e includes SPSS, Stata, SAS, and R code and commands for each type of analysis or recoding of variables in the book. Solutions to two of the end-of-chapter exercise types are also available for students to practice. The instructor side of the site contains editable PowerPoint slides, other solutions, and a test bank.
Multiple Regression and Beyond
Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Multiple Regression
Author: Leona S. Aiken
Publisher: SAGE
ISBN: 9780761907121
Category : Business & Economics
Languages : en
Pages : 228
Book Description
This successful book, now available in paperback, provides academics and researchers with a clear set of prescriptions for estimating, testing and probing interactions in regression models. Including the latest research in the area, such as Fuller's work on the corrected/constrained estimator, the book is appropriate for anyone who uses multiple regression to estimate models, or for those enrolled in courses on multivariate statistics.
Publisher: SAGE
ISBN: 9780761907121
Category : Business & Economics
Languages : en
Pages : 228
Book Description
This successful book, now available in paperback, provides academics and researchers with a clear set of prescriptions for estimating, testing and probing interactions in regression models. Including the latest research in the area, such as Fuller's work on the corrected/constrained estimator, the book is appropriate for anyone who uses multiple regression to estimate models, or for those enrolled in courses on multivariate statistics.
Multiple Regression in Practice
Author: William Dale Berry
Publisher: SAGE
ISBN: 9780803920545
Category : Mathematics
Languages : en
Pages : 100
Book Description
The authors provide a systematic treatment of the major problems involved in using regression analysis. They clearly and concisely discuss the consequences of violating the assumptions of the regression model, procedures for detecting violations, and strategies for dealing with these problems.
Publisher: SAGE
ISBN: 9780803920545
Category : Mathematics
Languages : en
Pages : 100
Book Description
The authors provide a systematic treatment of the major problems involved in using regression analysis. They clearly and concisely discuss the consequences of violating the assumptions of the regression model, procedures for detecting violations, and strategies for dealing with these problems.
Beyond Multiple Linear Regression
Author: Paul Roback
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Multiple Regression and Beyond
Author: Timothy Keith
Publisher: Pearson
ISBN: 9781292027654
Category : Regression analysis
Languages : en
Pages : 492
Book Description
This book is designed to provide a conceptually-oriented introduction to multiple regression. It is divided into two main parts: the author concentrates on multiple regression analysis in the first part and structural equation modeling in the second part.
Publisher: Pearson
ISBN: 9781292027654
Category : Regression analysis
Languages : en
Pages : 492
Book Description
This book is designed to provide a conceptually-oriented introduction to multiple regression. It is divided into two main parts: the author concentrates on multiple regression analysis in the first part and structural equation modeling in the second part.
Interaction Effects in Multiple Regression
Author: James Jaccard
Publisher: SAGE Publications
ISBN: 1544332572
Category : Social Science
Languages : en
Pages : 108
Book Description
Interaction Effects in Multiple Regression has provided students and researchers with a readable and practical introduction to conducting analyses of interaction effects in the context of multiple regression. The new addition will expand the coverage on the analysis of three way interactions in multiple regression analysis.
Publisher: SAGE Publications
ISBN: 1544332572
Category : Social Science
Languages : en
Pages : 108
Book Description
Interaction Effects in Multiple Regression has provided students and researchers with a readable and practical introduction to conducting analyses of interaction effects in the context of multiple regression. The new addition will expand the coverage on the analysis of three way interactions in multiple regression analysis.
Essential Statistics, Regression, and Econometrics
Author: Gary Smith
Publisher: Academic Press
ISBN: 0128034920
Category : Mathematics
Languages : en
Pages : 397
Book Description
Essential Statistics, Regression, and Econometrics, Second Edition, is innovative in its focus on preparing students for regression/econometrics, and in its extended emphasis on statistical reasoning, real data, pitfalls in data analysis, and modeling issues. This book is uncommonly approachable and easy to use, with extensive word problems that emphasize intuition and understanding. Too many students mistakenly believe that statistics courses are too abstract, mathematical, and tedious to be useful or interesting. To demonstrate the power, elegance, and even beauty of statistical reasoning, this book provides hundreds of new and updated interesting and relevant examples, and discusses not only the uses but also the abuses of statistics. The examples are drawn from many areas to show that statistical reasoning is not an irrelevant abstraction, but an important part of everyday life. - Includes hundreds of updated and new, real-world examples to engage students in the meaning and impact of statistics - Focuses on essential information to enable students to develop their own statistical reasoning - Ideal for one-quarter or one-semester courses taught in economics, business, finance, politics, sociology, and psychology departments, as well as in law and medical schools - Accompanied by an ancillary website with an instructors solutions manual, student solutions manual and supplementing chapters
Publisher: Academic Press
ISBN: 0128034920
Category : Mathematics
Languages : en
Pages : 397
Book Description
Essential Statistics, Regression, and Econometrics, Second Edition, is innovative in its focus on preparing students for regression/econometrics, and in its extended emphasis on statistical reasoning, real data, pitfalls in data analysis, and modeling issues. This book is uncommonly approachable and easy to use, with extensive word problems that emphasize intuition and understanding. Too many students mistakenly believe that statistics courses are too abstract, mathematical, and tedious to be useful or interesting. To demonstrate the power, elegance, and even beauty of statistical reasoning, this book provides hundreds of new and updated interesting and relevant examples, and discusses not only the uses but also the abuses of statistics. The examples are drawn from many areas to show that statistical reasoning is not an irrelevant abstraction, but an important part of everyday life. - Includes hundreds of updated and new, real-world examples to engage students in the meaning and impact of statistics - Focuses on essential information to enable students to develop their own statistical reasoning - Ideal for one-quarter or one-semester courses taught in economics, business, finance, politics, sociology, and psychology departments, as well as in law and medical schools - Accompanied by an ancillary website with an instructors solutions manual, student solutions manual and supplementing chapters
Multiple Regression with Discrete Dependent Variables
Author: John G. Orme
Publisher: Oxford University Press
ISBN: 0199716293
Category : Social Science
Languages : en
Pages : 225
Book Description
Most social work researchers are familiar with linear regression techniques, which are fairly straightforward to conduct, interpret, and present. However, linear regression is not appropriate for discrete dependent variables, and social work research frequently employs these variables, focusing on outcomes such as placement in foster care or not; level of severity of elder abuse or depression symptoms; or number of reoffenses by juvenile delinquents in the year following adjudication. This book presents detailed discussions of regression models that are appropriate for a variety of discrete dependent variables. The major challenges of such analyses lie in the non-linear relationships between independent and dependent variables, and particularly in interpreting and presenting findings. Clear language guides the reader briefly through each step of the analysis, using SPSS and result presentation to enhance understanding of the important link function. The book begins with a brief review of linear regression; next, the authors cover basic binary logistic regression, which provides a foundation for the other techniques. In particular, comprehension of the link function is vital in order to later interpret these methods' results. Though the book assumes a basic understanding of linear regression, reviews and definitions throughout provide useful reminders of important terms and their meaning, and throughout the book the authors provide detailed examples based on their own data, which readers may work through by accessing the data and output on companion website. Social work and other social sciences faculty, students, and researchers who already have a basic understanding of linear regression but are not as familiar with the regression analysis of discrete dependent variables will find this straightforward pocket guide to be a terrific boon to their bookshelves. For additional resources, visit http://www.oup.com/us/pocketguides.
Publisher: Oxford University Press
ISBN: 0199716293
Category : Social Science
Languages : en
Pages : 225
Book Description
Most social work researchers are familiar with linear regression techniques, which are fairly straightforward to conduct, interpret, and present. However, linear regression is not appropriate for discrete dependent variables, and social work research frequently employs these variables, focusing on outcomes such as placement in foster care or not; level of severity of elder abuse or depression symptoms; or number of reoffenses by juvenile delinquents in the year following adjudication. This book presents detailed discussions of regression models that are appropriate for a variety of discrete dependent variables. The major challenges of such analyses lie in the non-linear relationships between independent and dependent variables, and particularly in interpreting and presenting findings. Clear language guides the reader briefly through each step of the analysis, using SPSS and result presentation to enhance understanding of the important link function. The book begins with a brief review of linear regression; next, the authors cover basic binary logistic regression, which provides a foundation for the other techniques. In particular, comprehension of the link function is vital in order to later interpret these methods' results. Though the book assumes a basic understanding of linear regression, reviews and definitions throughout provide useful reminders of important terms and their meaning, and throughout the book the authors provide detailed examples based on their own data, which readers may work through by accessing the data and output on companion website. Social work and other social sciences faculty, students, and researchers who already have a basic understanding of linear regression but are not as familiar with the regression analysis of discrete dependent variables will find this straightforward pocket guide to be a terrific boon to their bookshelves. For additional resources, visit http://www.oup.com/us/pocketguides.