Famous Problems of Geometry and How to Solve Them

Famous Problems of Geometry and How to Solve Them PDF Author: Benjamin Bold
Publisher: Courier Corporation
ISBN: 0486137635
Category : Science
Languages : en
Pages : 148

Book Description
Delve into the development of modern mathematics and match wits with Euclid, Newton, Descartes, and others. Each chapter explores an individual type of challenge, with commentary and practice problems. Solutions.

Challenging Problems in Geometry

Challenging Problems in Geometry PDF Author: Alfred S. Posamentier
Publisher: Courier Corporation
ISBN: 0486134865
Category : Mathematics
Languages : en
Pages : 275

Book Description
Collection of nearly 200 unusual problems dealing with congruence and parallelism, the Pythagorean theorem, circles, area relationships, Ptolemy and the cyclic quadrilateral, collinearity and concurrency and more. Arranged in order of difficulty. Detailed solutions.

The Humongous Book of Algebra Problems

The Humongous Book of Algebra Problems PDF Author: W. Michael Kelley
Publisher: Penguin
ISBN: 9781592577224
Category : Mathematics
Languages : en
Pages : 576

Book Description
Presents algebra exercises with easy-to-follow guidelines, and includes over one thousand problems in numerous algebraic topics.

The Ultimate Challenge

The Ultimate Challenge PDF Author: Jeffrey C. Lagarias
Publisher: American Mathematical Society
ISBN: 1470472899
Category : Mathematics
Languages : en
Pages : 360

Book Description
The $3x+1$ problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer $x$ is odd then “multiply by three and add one”, while if it is even then “divide by two”. The $3x+1$ problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. Generalizations of the problem are known to be undecidable, and the problem itself is believed to be extraordinarily difficult. This book reports on what is known on this problem. It consists of a collection of papers, which can be read independently of each other. The book begins with two introductory papers, one giving an overview and current status, and the second giving history and basic results on the problem. These are followed by three survey papers on the problem, relating it to number theory and dynamical systems, to Markov chains and ergodic theory, and to logic and the theory of computation. The next paper presents results on probabilistic models for behavior of the iteration. This is followed by a paper giving the latest computational results on the problem, which verify its truth for $x < 5.4 cdot 10^{18}$. The book also reprints six early papers on the problem and related questions, by L. Collatz, J. H. Conway, H. S. M. Coxeter, C. J. Everett, and R. K. Guy, each with editorial commentary. The book concludes with an annotated bibliography of work on the problem up to the year 2000.

Euclidean Geometry in Mathematical Olympiads

Euclidean Geometry in Mathematical Olympiads PDF Author: Evan Chen
Publisher: American Mathematical Soc.
ISBN: 1470466201
Category : Education
Languages : en
Pages : 311

Book Description
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.

100 Great Problems of Elementary Mathematics

100 Great Problems of Elementary Mathematics PDF Author: Heinrich Dörrie
Publisher: Courier Corporation
ISBN: 0486318478
Category : Mathematics
Languages : en
Pages : 418

Book Description
Problems that beset Archimedes, Newton, Euler, Cauchy, Gauss, Monge, Steiner, and other great mathematical minds. Features squaring the circle, pi, and similar problems. No advanced math is required. Includes 100 problems with proofs.

Open Problems in Mathematics

Open Problems in Mathematics PDF Author: John Forbes Nash, Jr.
Publisher: Springer
ISBN: 9783319812106
Category : Mathematics
Languages : en
Pages : 543

Book Description
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.

The Girl who Played with Fire

The Girl who Played with Fire PDF Author: Stieg Larsson
Publisher: Vintage
ISBN: 0307476154
Category : Blomkvist, Mikael (Fictitious character)
Languages : en
Pages : 738

Book Description
When the reporters to a sex-trafficking exposé are murdered and computer hacker Lisbeth Salander is targeted as the killer, Mikael Blomkvist, the publisher of the exposé, investigates to clear Lisbeth's name.

Methods of Solving Complex Geometry Problems

Methods of Solving Complex Geometry Problems PDF Author: Ellina Grigorieva
Publisher: Springer Science & Business Media
ISBN: 331900705X
Category : Mathematics
Languages : en
Pages : 247

Book Description
This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.