Introduction to Neuroimaging Analysis

Introduction to Neuroimaging Analysis PDF Author: Mark Jenkinson
Publisher: Oxford University Press
ISBN: 0198816308
Category : Medical
Languages : en
Pages : 277

Book Description
This accessible primer gives an introduction to the wide array of MRI-based neuroimaging methods that are used in research. It provides an overview of the fundamentals of what different MRI modalities measure, what artifacts commonly occur, the essentials of the analysis, and common 'pipelines'.

Introduction to Neuroimaging Analysis

Introduction to Neuroimaging Analysis PDF Author: Mark Jenkinson
Publisher: Oxford University Press
ISBN: 0192548271
Category : Medical
Languages : en
Pages : 538

Book Description
MRI has emerged as a powerful way of studying in-vivo brain structure and function in both healthy and disease states. Whilst new researchers may be able to call upon advice and support for acquisition from operators, radiologists and technicians, it is more challenging to obtain an understanding of the principles of analysing neuroimaging data. This is crucial for choosing acquisition parameters, designing and performing appropriate experiments, and correctly interpreting the results. This primer gives a general and accessible introduction to the wide array of MRI-based neuroimaging methods that are used in research. Supplemented with online datasets and examples to enable the reader to obtain hands-on experience working with real data, it provides a practical and approachable introduction for those new to the neuroimaging field. The text also covers the fundamentals of what different MRI modalities measure, what artifacts commonly occur, the essentials of the analysis, and common 'pipelines' including brain extraction, registration and segmentation. As it does not require any background knowledge beyond high-school mathematics and physics, this primer is essential reading for anyone wanting to work in neuroimaging or grasp the results coming from this rapidly expanding field. The Oxford Neuroimaging Primers are short texts aimed at new researchers or advanced undergraduates from the biological, medical or physical sciences. They are intended to provide a broad understanding of the ways in which neuroimaging data can be analyzed and how that relates to acquisition and interpretation. Each primer has been written so that it is a stand-alone introduction to a particular area of neuroimaging, and the primers also work together to provide a comprehensive foundation for this increasingly influential field.

Introduction to Resting State fMRI Functional Connectivity

Introduction to Resting State fMRI Functional Connectivity PDF Author: Janine Bijsterbosch
Publisher: Oxford University Press
ISBN: 0192535757
Category : Medical
Languages : en
Pages : 287

Book Description
Spontaneous 'resting-state' fluctuations in neuronal activity offer insights into the inherent organisation of the human brain, and may provide markers for diagnosis and treatment of mental disorders. Resting state functional magnetic resonance imaging (fMRI) can be used to investigate intrinsic functional connectivity networks, which are identified based on similarities in the signal measured from different regions. From data acquisition to results interpretation, An Introduction to Resting State fMRI Functional Connectivity discusses a wide range of approaches without expecting previous knowledge of the reader, making it truly accessible to readers from a broad range of backgrounds. Supplemented with online examples to enable the reader to obtain hands-on experience working with data, the text also provides details to enhance learning for those already experienced in the field. The Oxford Neuroimaging Primers are written for new researchers or advanced undergraduates in neuroimaging to provide a thorough understanding of the ways in which neuroimaging data can be analysed and interpreted. Aimed at students without a background in mathematics or physics, this book is also important reading for those familiar with task fMRI but new to the field of resting state fMRI.

Handbook of Functional MRI Data Analysis

Handbook of Functional MRI Data Analysis PDF Author: Russell A. Poldrack
Publisher: Cambridge University Press
ISBN: 9781009481168
Category : Medical
Languages : en
Pages : 0

Book Description
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging brain function. Handbook for Functional MRI Data Analysis provides a comprehensive and practical introduction to the methods used for fMRI data analysis. Using minimal jargon, this book explains the concepts behind processing fMRI data, focusing on the techniques that are most commonly used in the field. This book provides background about the methods employed by common data analysis packages including FSL, SPM, and AFNI. Some of the newest cutting-edge techniques, including pattern classification analysis, connectivity modeling, and resting state network analysis, are also discussed. Readers of this book, whether newcomers to the field or experienced researchers, will obtain a deep and effective knowledge of how to employ fMRI analysis to ask scientific questions and become more sophisticated users of fMRI analysis software.

Electrical Neuroimaging

Electrical Neuroimaging PDF Author: Christoph M. Michel
Publisher: Cambridge University Press
ISBN: 0521879795
Category : Medical
Languages : en
Pages : 249

Book Description
An authoritative reference giving a systematic overview of new electrical imaging methods. Provides a comprehensive and sound introduction to the basics of multichannel recording of EEG and event-related potential (ERP) data, as well as spatio-temporal analysis of the potential fields. Chapters include practical examples of illustrative studies and approaches.

Fundamentals of Brain Network Analysis

Fundamentals of Brain Network Analysis PDF Author: Alex Fornito
Publisher: Academic Press
ISBN: 0124081185
Category : Medical
Languages : en
Pages : 496

Book Description
Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain

Handbook of Neuroimaging Data Analysis

Handbook of Neuroimaging Data Analysis PDF Author: Hernando Ombao
Publisher: CRC Press
ISBN: 1482220989
Category : Mathematics
Languages : en
Pages : 702

Book Description
This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Independent Component Analysis

Independent Component Analysis PDF Author: James V. Stone
Publisher: MIT Press
ISBN: 9780262693158
Category : Computers
Languages : en
Pages : 224

Book Description
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.

Introduction to Human Neuroimaging

Introduction to Human Neuroimaging PDF Author: Hans Op de Beeck
Publisher: Cambridge University Press
ISBN: 1107180309
Category : Mathematics
Languages : en
Pages : 369

Book Description
An accessible primer for courses on human neuroimaging methods, with example research studies, color figures, and practice questions.

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN

Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN PDF Author: Alfonso Nieto-Castanon
Publisher: Hilbert Press
ISBN: 0578644002
Category : Science
Languages : en
Pages : 113

Book Description
This handbook describes methods for processing and analyzing functional connectivity Magnetic Resonance Imaging (fcMRI) data using the CONN toolbox, a popular freely-available functional connectivity analysis software. Content description [excerpt from introduction] The first section (fMRI minimal preprocessing pipeline) describes standard and advanced preprocessing steps in fcMRI. These steps are aimed at correcting or minimizing the influence of well-known factors affecting the quality of functional and anatomical MRI data, including effects arising from subject motion within the scanner, temporal and spatial image distortions due to the sequential nature of the scanning acquisition protocol, and inhomogeneities in the scanner magnetic field, as well as anatomical differences among subjects. Even after these conventional preprocessing steps, the measured blood-oxygen-level-dependent (BOLD) signal often still contains a considerable amount of noise from a combination of physiological effects, outliers, and residual subject-motion factors. If unaccounted for, these factors would introduce very strong and noticeable biases in all functional connectivity measures. The second section (fMRI denoising pipeline) describes standard and advanced denoising procedures in CONN that are used to characterize and remove the effect of these residual non-neural noise sources. Functional connectivity Magnetic Resonance Imaging studies attempt to quantify the level of functional integration across different brain areas. The third section (functional connectivity measures) describes a representative set of functional connectivity measures available in CONN, each focusing on different indicators of functional integration, including seed-based connectivity measures, ROI-to-ROI measures, graph theoretical approaches, network-based measures, and dynamic connectivity measures. Second-level analyses allow researchers to make inferences about properties of groups or populations, by generalizing from the observations of only a subset of subjects in a study. The fourth section (General Linear Model) describes the mathematics behind the General Linear Model (GLM), the approach used in CONN for all second-level analyses of functional connectivity measures. The description includes GLM model definition, parameter estimation, and hypothesis testing framework, as well as several practical examples and general guidelines aimed at helping researchers use this method to answer their specific research questions. The last section (cluster-level inferences) details several approaches implemented in CONN that allow researchers to make meaningful inferences from their second-level analysis results while providing appropriate family-wise error control (FWEC), whether in the context of voxel-based measures, such as when studying properties of seed-based maps across multiple subjects, or in the context of ROI-to-ROI measures, such as when studying properties of ROI-to-ROI connectivity matrices across multiple subjects.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.