Author: Darryl D Holm
Publisher: World Scientific Publishing Company
ISBN: 1911298658
Category : Mathematics
Languages : en
Pages : 466
Book Description
See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a
Geometric Mechanics and Symmetry
Author: Darryl D. Holm
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Publisher: Oxford University Press
ISBN: 0199212902
Category : Mathematics
Languages : en
Pages : 537
Book Description
A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.
Geometric Mechanics - Part Ii: Rotating, Translating And Rolling (2nd Edition)
Author: Darryl D Holm
Publisher: World Scientific
ISBN: 1911298666
Category : Mathematics
Languages : en
Pages : 411
Book Description
See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study./a
Publisher: World Scientific
ISBN: 1911298666
Category : Mathematics
Languages : en
Pages : 411
Book Description
See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study./a
Introduction to Mechanics and Symmetry
Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0387217924
Category : Science
Languages : en
Pages : 593
Book Description
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
Publisher: Springer Science & Business Media
ISBN: 0387217924
Category : Science
Languages : en
Pages : 593
Book Description
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
Dynamical Systems and Geometric Mechanics
Author: Jared Maruskin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110597802
Category : Science
Languages : en
Pages : 350
Book Description
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110597802
Category : Science
Languages : en
Pages : 350
Book Description
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Mathematical Methods of Classical Mechanics
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Tensor Analysis
Author: Heinz Schade
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110404265
Category : Mathematics
Languages : en
Pages : 344
Book Description
Tensor calculus is a prerequisite for many tasks in physics and engineering. This book introduces the symbolic and the index notation side by side and offers easy access to techniques in the field by focusing on algorithms in index notation. It explains the required algebraic tools and contains numerous exercises with answers, making it suitable for self study for students and researchers in areas such as solid mechanics, fluid mechanics, and electrodynamics. Contents Algebraic Tools Tensor Analysis in Symbolic Notation and in Cartesian Coordinates Algebra of Second Order Tensors Tensor Analysis in Curvilinear Coordinates Representation of Tensor Functions Appendices: Solutions to the Problems; Cylindrical Coordinates and Spherical Coordinates
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110404265
Category : Mathematics
Languages : en
Pages : 344
Book Description
Tensor calculus is a prerequisite for many tasks in physics and engineering. This book introduces the symbolic and the index notation side by side and offers easy access to techniques in the field by focusing on algorithms in index notation. It explains the required algebraic tools and contains numerous exercises with answers, making it suitable for self study for students and researchers in areas such as solid mechanics, fluid mechanics, and electrodynamics. Contents Algebraic Tools Tensor Analysis in Symbolic Notation and in Cartesian Coordinates Algebra of Second Order Tensors Tensor Analysis in Curvilinear Coordinates Representation of Tensor Functions Appendices: Solutions to the Problems; Cylindrical Coordinates and Spherical Coordinates
Foundations Of Mechanics
Author: Ralph Abraham
Publisher: CRC Press
ISBN: 0429689047
Category : Science
Languages : en
Pages : 849
Book Description
Foundations of Mechanics is a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the two-body problem and three-body problem.
Publisher: CRC Press
ISBN: 0429689047
Category : Science
Languages : en
Pages : 849
Book Description
Foundations of Mechanics is a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the two-body problem and three-body problem.
Emergence Of The Quantum From The Classical: Mathematical Aspects Of Quantum Processes
Author: Maurice A De Gosson
Publisher: World Scientific
ISBN: 1786344165
Category : Science
Languages : en
Pages : 306
Book Description
The emergence of quantum mechanics from classical world mechanics is now a well-established theme in mathematical physics. This book demonstrates that quantum mechanics can indeed be viewed as a refinement of Hamiltonian mechanics, and builds on the work of George Mackey in relation to their mathematical foundations. Additionally when looking at the differences with classical mechanics, quantum mechanics crucially depends on the value of Planck's constant h. Recent cosmological observations tend to indicate that not only the fine structure constant α but also h might have varied in both time and space since the Big Bang. We explore the mathematical and physical consequences of a variation of h; surprisingly we see that a decrease of h leads to transitions from the quantum to the classical.Emergence of the Quantum from the Classical provides help to undergraduate and graduate students of mathematics, physics and quantum theory looking to advance into research in the field.
Publisher: World Scientific
ISBN: 1786344165
Category : Science
Languages : en
Pages : 306
Book Description
The emergence of quantum mechanics from classical world mechanics is now a well-established theme in mathematical physics. This book demonstrates that quantum mechanics can indeed be viewed as a refinement of Hamiltonian mechanics, and builds on the work of George Mackey in relation to their mathematical foundations. Additionally when looking at the differences with classical mechanics, quantum mechanics crucially depends on the value of Planck's constant h. Recent cosmological observations tend to indicate that not only the fine structure constant α but also h might have varied in both time and space since the Big Bang. We explore the mathematical and physical consequences of a variation of h; surprisingly we see that a decrease of h leads to transitions from the quantum to the classical.Emergence of the Quantum from the Classical provides help to undergraduate and graduate students of mathematics, physics and quantum theory looking to advance into research in the field.