Bad Data Handbook

Bad Data Handbook PDF Author: Q. Ethan McCallum
Publisher: "O'Reilly Media, Inc."
ISBN: 1449321887
Category : Computers
Languages : en
Pages : 265

Book Description
"Mapping the world of data problems"--Cover.

Bad Data Handbook

Bad Data Handbook PDF Author: Q. Ethan McCallum
Publisher: "O'Reilly Media, Inc."
ISBN: 1449324975
Category : Computers
Languages : en
Pages : 265

Book Description
What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you’ll discover how to: Test drive your data to see if it’s ready for analysis Work spreadsheet data into a usable form Handle encoding problems that lurk in text data Develop a successful web-scraping effort Use NLP tools to reveal the real sentiment of online reviews Address cloud computing issues that can impact your analysis effort Avoid policies that create data analysis roadblocks Take a systematic approach to data quality analysis

Fundamentals of Data Visualization

Fundamentals of Data Visualization PDF Author: Claus O. Wilke
Publisher: O'Reilly Media
ISBN: 1492031054
Category : Computers
Languages : en
Pages : 390

Book Description
Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story

The Handbook for Bad Days

The Handbook for Bad Days PDF Author: Eveline Helmink
Publisher: Tiller Press
ISBN: 1982152761
Category : Self-Help
Languages : en
Pages : 240

Book Description
Keep your head held high even on the bad days with 70 mindful self-care strategies to find happiness. In a time when social media encourages us to constantly highlight how great we’re doing and how #Blessed life is, there seems to be little room for the inevitable truth: in every life, there are days that are NOT great. Yet decades in the self-help world have taught Eveline Helmink—editor-in-chief of Happinez magazine and a self-titled cheerleader for failure and discomfort—that true emotional growth comes from realizing that it’s often on our worst days when we learn the most about what empowers, strengthens, and revitalizes us—and yes, brings us happiness. In The Handbook for Bad Days, Helmink teaches you how to take advantage of bad days as moments for self-discovery and emotional understanding. Her compassionate, no-bullshit approach encourages you to detox from the social media world and rethink your coping strategies, exploring topics such as, -The benefits of a good cry -Why, sometimes, it’s okay to give up -Why a fuzzy pink cardigan and some Celine Dion is just as good as a Sanskrit mantra The Handbook for Bad Days is the ultimate guide for anyone who strives to be present, not perfect. Perfect for fans of Glennon Doyle, Elizabeth Lesser, and Krista Tippet, The Handbook for Bad Days is a call to face our worst days with courage and intentionality.

The Crime Data Handbook

The Crime Data Handbook PDF Author: Laura Huey
Publisher: Policy Press
ISBN: 1529232058
Category : Social Science
Languages : en
Pages : 352

Book Description
Crime research has grown substantially over the past decade, with a rise in evidence-informed approaches to criminal justice, statistics-driven decision-making and predictive analytics. The fuel that has driven this growth is data – and one of its most pressing challenges is the lack of research on the use and interpretation of data sources. This accessible, engaging book closes that gap for researchers, practitioners and students. International researchers and crime analysts discuss the strengths, perils and opportunities of the data sources and tools now available and their best use in informing sound public policy and criminal justice practice.

Python Data Science Handbook

Python Data Science Handbook PDF Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609

Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Big Data Architect’s Handbook

Big Data Architect’s Handbook PDF Author: Syed Muhammad Fahad Akhtar
Publisher: Packt Publishing Ltd
ISBN: 1788836383
Category : Computers
Languages : en
Pages : 476

Book Description
A comprehensive end-to-end guide that gives hands-on practice in big data and Artificial Intelligence Key Features Learn to build and run a big data application with sample code Explore examples to implement activities that a big data architect performs Use Machine Learning and AI for structured and unstructured data Book Description The big data architects are the “masters” of data, and hold high value in today’s market. Handling big data, be it of good or bad quality, is not an easy task. The prime job for any big data architect is to build an end-to-end big data solution that integrates data from different sources and analyzes it to find useful, hidden insights. Big Data Architect’s Handbook takes you through developing a complete, end-to-end big data pipeline, which will lay the foundation for you and provide the necessary knowledge required to be an architect in big data. Right from understanding the design considerations to implementing a solid, efficient, and scalable data pipeline, this book walks you through all the essential aspects of big data. It also gives you an overview of how you can leverage the power of various big data tools such as Apache Hadoop and ElasticSearch in order to bring them together and build an efficient big data solution. By the end of this book, you will be able to build your own design system which integrates, maintains, visualizes, and monitors your data. In addition, you will have a smooth design flow in each process, putting insights in action. What you will learn Learn Hadoop Ecosystem and Apache projects Understand, compare NoSQL database and essential software architecture Cloud infrastructure design considerations for big data Explore application scenario of big data tools for daily activities Learn to analyze and visualize results to uncover valuable insights Build and run a big data application with sample code from end to end Apply Machine Learning and AI to perform big data intelligence Practice the daily activities performed by big data architects Who this book is for Big Data Architect’s Handbook is for you if you are an aspiring data professional, developer, or IT enthusiast who aims to be an all-round architect in big data. This book is your one-stop solution to enhance your knowledge and carry out easy to complex activities required to become a big data architect.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

The Data Journalism Handbook

The Data Journalism Handbook PDF Author: Jonathan Gray
Publisher: "O'Reilly Media, Inc."
ISBN: 1449330029
Category : Language Arts & Disciplines
Languages : en
Pages : 243

Book Description
When you combine the sheer scale and range of digital information now available with a journalist’s "nose for news" and her ability to tell a compelling story, a new world of possibility opens up. With The Data Journalism Handbook, you’ll explore the potential, limits, and applied uses of this new and fascinating field. This valuable handbook has attracted scores of contributors since the European Journalism Centre and the Open Knowledge Foundation launched the project at MozFest 2011. Through a collection of tips and techniques from leading journalists, professors, software developers, and data analysts, you’ll learn how data can be either the source of data journalism or a tool with which the story is told—or both. Examine the use of data journalism at the BBC, the Chicago Tribune, the Guardian, and other news organizations Explore in-depth case studies on elections, riots, school performance, and corruption Learn how to find data from the Web, through freedom of information laws, and by "crowd sourcing" Extract information from raw data with tips for working with numbers and statistics and using data visualization Deliver data through infographics, news apps, open data platforms, and download links

Python for Data Analysis

Python for Data Analysis PDF Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553

Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.