Understanding Pure Mathematics

Understanding Pure Mathematics PDF Author: A. J. Sadler
Publisher: Oxford University Press, USA
ISBN: 9780199142439
Category : Mathematics
Languages : en
Pages : 614

Book Description
This textbook covers in one volume all topics required in the pure mathematics section of single subject A-Level Mathematics syllabuses in the UK, as well as a significant part of the work required by those studying for Further Mathematics and for A-Level

Understanding Pure Mathematics

Understanding Pure Mathematics PDF Author: Thorning
Publisher: Oxford University Press - Children
ISBN: 1382018207
Category :
Languages : en
Pages :

Book Description
A classic single-volume textbook, popular for its direct and straightforward approach. Understanding Pure Mathematics starts by filling the gap between GCSE and A Level and builds on this base for candidates taking either single-subject of double-subject A Level.

Pure Mathematics

Pure Mathematics PDF Author: Linda Bostock
Publisher: Nelson Thornes
ISBN: 9780859500975
Category : Juvenile Nonfiction
Languages : en
Pages : 660

Book Description
Includes a section on matrices and transformations, this book features worked examples and exercises to illustrate concepts at every stage of its development. It caters for the "Pure Mathematics" content of various courses in Further Mathematics and also for preparation for the Advanced Extension Award.

Pure Mathematics

Pure Mathematics PDF Author: John Kenneth Backhouse
Publisher:
ISBN: 9781408227725
Category : Mathematics
Languages : en
Pages : 464

Book Description
Pure Mathematics is a new Students' Book and accompanying Teacher's Guide that offers full coverage of the East African A Level curriculum.

A Concise Introduction to Pure Mathematics

A Concise Introduction to Pure Mathematics PDF Author: Martin Liebeck
Publisher: CRC Press
ISBN: 1315360713
Category : Mathematics
Languages : en
Pages : 235

Book Description
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

Pure Mathematics for Advanced Level

Pure Mathematics for Advanced Level PDF Author: B. D. Bunday
Publisher: Butterworth-Heinemann
ISBN: 1483106136
Category : Mathematics
Languages : en
Pages : 526

Book Description
Pure Mathematics for Advanced Level, Second Edition is written to meet the needs of the student studying for the General Certificate of Education at Advanced Level. The text is organized into 22 chapters. Chapters 1-5 cover topics in algebra such as operations with real numbers, the binomial theorem, and the quadratic function and the quadratic equation. The principles, methods and techniques in calculus, trigonometry, and co-ordinate geometry are provided as well. Two new chapters have been added: Numerical Methods and Vectors. Mathematics students will find this book extremely useful.

Understanding Analysis

Understanding Analysis PDF Author: Stephen Abbott
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269

Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.

How We Understand Mathematics

How We Understand Mathematics PDF Author: Jacek Woźny
Publisher: Springer
ISBN: 3319776886
Category : Mathematics
Languages : en
Pages : 122

Book Description
This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well.

Understanding Mechanics

Understanding Mechanics PDF Author: A. J. Sadler
Publisher: Oxford University Press, USA
ISBN: 9780199146758
Category : Mathematics
Languages : en
Pages : 516

Book Description
This 2nd edition takes into account recent changes to A-level syllabuses, including the need for modelling. It has been reset to match the larger format of its companion, UNDERSTANDING PURE MATHEMATICS

Pure Mathematics for Beginners

Pure Mathematics for Beginners PDF Author: Steve Warner
Publisher:
ISBN: 9780999811757
Category :
Languages : en
Pages : 262

Book Description
Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.