Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Data Mining

Data Mining PDF Author: Ian H. Witten
Publisher: Elsevier
ISBN: 0080890369
Category : Computers
Languages : en
Pages : 665

Book Description
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Commercial Data Mining

Commercial Data Mining PDF Author: David Nettleton
Publisher: Elsevier
ISBN: 012416658X
Category : Computers
Languages : en
Pages : 361

Book Description
Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience

Temporal Data Mining

Temporal Data Mining PDF Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Category : Business & Economics
Languages : en
Pages : 398

Book Description
From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.

Data Preparation for Data Mining

Data Preparation for Data Mining PDF Author: Dorian Pyle
Publisher: Morgan Kaufmann
ISBN: 9781558605299
Category : Computers
Languages : en
Pages : 566

Book Description
This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.

Introduction to Data Mining

Introduction to Data Mining PDF Author: Pang-Ning Tan
Publisher: Pearson Education India
ISBN: 9332586055
Category :
Languages : en
Pages : 781

Book Description
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. Each major topic is organized into two chapters, beginni

Data Mining with R

Data Mining with R PDF Author: Luis Torgo
Publisher: CRC Press
ISBN: 1315399091
Category : Business & Economics
Languages : en
Pages : 426

Book Description
Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.