Proofs from THE BOOK

Proofs from THE BOOK PDF Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194

Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

How to Prove It

How to Prove It PDF Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401

Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Mathematical Reasoning

Mathematical Reasoning PDF Author: Theodore A. Sundstrom
Publisher: Prentice Hall
ISBN: 9780131877184
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Book Description
Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom

Conjecture and Proof

Conjecture and Proof PDF Author: Miklos Laczkovich
Publisher: American Mathematical Soc.
ISBN: 1470458322
Category : Mathematics
Languages : en
Pages : 118

Book Description
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.

An Introduction to Proof Theory

An Introduction to Proof Theory PDF Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336

Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.

Mathematical Proofs

Mathematical Proofs PDF Author: Gary Chartrand
Publisher: Pearson
ISBN: 9780321797094
Category : Proof theory
Languages : en
Pages : 0

Book Description
This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.

Proof in Geometry

Proof in Geometry PDF Author: A. I. Fetisov
Publisher: Courier Corporation
ISBN: 0486154920
Category : Mathematics
Languages : en
Pages : 130

Book Description
This single-volume compilation of 2 books explores the construction of geometric proofs. It offers useful criteria for determining correctness and presents examples of faulty proofs that illustrate common errors. 1963 editions.

The Art of Proof

The Art of Proof PDF Author: Matthias Beck
Publisher: Springer Science & Business Media
ISBN: 1441970231
Category : Mathematics
Languages : en
Pages : 185

Book Description
The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

Proof and the Art of Mathematics

Proof and the Art of Mathematics PDF Author: Joel David Hamkins
Publisher: MIT Press
ISBN: 0262362562
Category : Mathematics
Languages : en
Pages : 132

Book Description
How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.
Proudly powered by WordPress | Theme: Rits Blog by Crimson Themes.