Author: Clifford A. Pickover
Publisher: Union Square + ORM
ISBN: 1402790996
Category : Science
Languages : en
Pages : 1054
Book Description
“A thrilling, fast-paced excursion through the history of physical discovery . . . from silly putty to string theory” (Dr. Paul Halpern, author of Collider). Following his previous volumes, The Science Book and The Math Book, acclaimed science writer Clifford Pickover returns with a richly illustrated chronology of physics, containing 250 short, entertaining, and thought-provoking entries. In addition to exploring such engaging topics as dark energy, parallel universes, the Doppler effect, the God particle, and Maxwells demon, The Physics Book extends back billions of years to the hypothetical Big Bang and forward trillions of years to a time of “quantum resurrection.” Like the previous titles in this series, The Physics Book offers a lively and accessible account of major concepts without getting bogged down in complex details.
Lectures On Computation
Author: Richard P. Feynman
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 328
Book Description
Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 328
Book Description
Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
University Physics Volume 1 of 3 (1st Edition Textbook)
Author: Samuel J. Ling
Publisher:
ISBN: 9781998109029
Category :
Languages : en
Pages : 0
Book Description
Black & white print. University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity, and magnetism. Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
Publisher:
ISBN: 9781998109029
Category :
Languages : en
Pages : 0
Book Description
Black & white print. University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity, and magnetism. Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
A Cultural History of Physics
Author: Károly Simonyi
Publisher: CRC Press
ISBN: 1568813295
Category : Mathematics
Languages : en
Pages : 666
Book Description
While the physical sciences are a continuously evolving source of technology and of understanding about our world, they have become so specialized and rely on so much prerequisite knowledge that for many people today the divide between the sciences and the humanities seems even greater than it was when C. P. Snow delivered his famous 1959 lecture, "The Two Cultures." In A Cultural History of Physics, Hungarian scientist and educator Károly Simonyi succeeds in bridging this chasm by describing the experimental methods and theoretical interpretations that created scientific knowledge, from ancient times to the present day, within the cultural environment in which it was formed. Unlike any other work of its kind, Simonyi’s seminal opus explores the interplay of science and the humanities to convey the wonder and excitement of scientific development throughout the ages. These pages contain an abundance of excerpts from original resources, a wide array of clear and straightforward explanations, and an astonishing wealth of insight, revealing the historical progress of science and inviting readers into a dialogue with the great scientific minds that shaped our current understanding of physics. Beautifully illustrated, accurate in its scientific content and broad in its historical and cultural perspective, this book will be a valuable reference for scholars and an inspiration to aspiring scientists and humanists who believe that science is an integral part of our culture.
Publisher: CRC Press
ISBN: 1568813295
Category : Mathematics
Languages : en
Pages : 666
Book Description
While the physical sciences are a continuously evolving source of technology and of understanding about our world, they have become so specialized and rely on so much prerequisite knowledge that for many people today the divide between the sciences and the humanities seems even greater than it was when C. P. Snow delivered his famous 1959 lecture, "The Two Cultures." In A Cultural History of Physics, Hungarian scientist and educator Károly Simonyi succeeds in bridging this chasm by describing the experimental methods and theoretical interpretations that created scientific knowledge, from ancient times to the present day, within the cultural environment in which it was formed. Unlike any other work of its kind, Simonyi’s seminal opus explores the interplay of science and the humanities to convey the wonder and excitement of scientific development throughout the ages. These pages contain an abundance of excerpts from original resources, a wide array of clear and straightforward explanations, and an astonishing wealth of insight, revealing the historical progress of science and inviting readers into a dialogue with the great scientific minds that shaped our current understanding of physics. Beautifully illustrated, accurate in its scientific content and broad in its historical and cultural perspective, this book will be a valuable reference for scholars and an inspiration to aspiring scientists and humanists who believe that science is an integral part of our culture.
Introduction to Solid State Physics for Materials Engineers
Author: Emil Zolotoyabko
Publisher: John Wiley & Sons
ISBN: 3527831592
Category : Science
Languages : en
Pages : 304
Book Description
A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.
Publisher: John Wiley & Sons
ISBN: 3527831592
Category : Science
Languages : en
Pages : 304
Book Description
A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.